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15

How Newton’s Principia changed physics

george e. smith

Newton expressly intended his Principia to produce three revolutionary changes

in the way physics and astronomy were being conducted:

1. Theorizing in physics should center on identifying fundamental forces of

nature and characterizing them as quantities related by laws to other mea-

surable quantities.

2. Astronomy should abandon the 1500 year tradition of trying to describe

complex orbital motions directly from observations and instead derive them

from the forces acting on the orbiting bodies.

3. Physics and astronomy should demand of themselves a much higher stan-

dard of evidence in theorizing than just success in deriving observed phe-

nomena from speculative hypotheses.

The Principia did indeed ultimately effect all three of these revolutions – the

first two obvious to anyone familiar with the subsequent history of physics and

orbital astronomy, but the third less obvious. Here accordingly we shall focus on

the third, though explaining how the book changed the standards of evidence

in physics will involve us with the first two as well. While those two emerged in

Newton’s thinking only with the Principia, the third he had set as a goal more

than a decade and a half earlier with the remark, “But truly with the help of

philosophical geometers and geometrical philosophers, instead of conjectures

and probabilities that are being blazoned everywhere, we shall finally achieve a

natural science supported by the greatest evidence” (Newton 1984, p. 87).

One reason why the revolution in evidence is less obvious has been a long-

standing, but nonetheless ill-informed misconstrual of the evidential reasoning

not only in the Principia, but in subsequent research in orbital mechanics as well.

The first two sections of the chapter will contrast that construal of the reasoning

with the evidence problem Newton saw himself as facing when he started

writing the Principia. Another reason for the revolution in evidence being

less obvious has been the complexity of the Principia’s approach to marshalling

evidence, involving as it does several distinct elements that are usually discussed,

when at all, in isolation from one another. Sections 15.3 through 15.6, forming

the main body of the chapter, will lay out those revolutionary elements one by
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how newton’s principia changed physics 361

one, indicating how each reflects this evidence problem. A final section will then

consider the whole formed by those elements, asking how clearly Newton saw

it as a response to the principal worries he had about potential shortcomings

in his evidence.

15.1 Introduction: the question

Prima facie, the evidence put forward on issues about orbital and other kinds of

motion at the time of Laplace’s Celestial Mechanics (1799–1805) was of much

higher quality than the evidence on those issues at the time of Copernicus

or, for that matter, Kepler. Furthermore, of the several advances that were

made between Copernicus and Laplace that enabled more decisive evidence to

be developed, nothing appears to have been more important than Newton’s

Principia. The central question of this chapter is, How did Newton’s Principia

change the way in which evidence was marshalled in orbital research, and

thereby in physics generally?

Prompting that question is a view that empirical science is first and foremost

a process of turning data into evidence. Evidence is a two-place relation between

data and claims that reach beyond them.1 Data, in and of themselves, are not

evidence for one claim more than another; something beyond data is always

needed for them to become evidence for anything. In experimental research

novel data are often generated, sometimes with masterful artifice, precisely

because their likely value as evidence is clear beforehand. Often, however, data

are abundantly available in nature, and the problem is one of figuring out what

they show about the world. Linguistics provides a clear example of this, for

data on the syntax of our native languages are immediately at hand, but we still

do not have a fully adequate account of the syntax of any natural language.2

In orbital astronomy, too, data have always been accessible in the form of

nightly observations of relative positions of objects on the celestial sphere, and

efforts to turn those data into evidence go back at least as far as the Babylonians.

The introduction of the telescope at the beginning of the seventeenth century

provided access to new data, but almost all of the evidence bearing on orbital

astronomy until the middle of the eighteenth century came from instrument-

aided naked-eye observation. New ways of turning those data into evidence

concerning celestial physics emerged between Copernicus and Laplace. Those

1 In deference to Charles Saunders Peirce, who surely would have insisted that evidence
involves a third place as well as the two cited, perhaps I should say “two- (or more) place
relation.”

2 In conversation a few years ago Noam Chomsky and I were unable to figure out which
of us first began speaking of science as an endeavor to turn data into evidence, followed
immediately by the remark that evidence is a relation and being a datum is not. Regardless
of who did, the thought was originally no less his than mine.
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362 george e. smith

new ways are the central concern of this chapter. How precisely did Newton’s

Principia contribute to them?

Seen from that perspective, the most frequently quoted portion of the Preface

to the first edition of the Principia indicates that Newton saw it as illustrating

a new way of turning data into evidence:

our present work sets forth mathematical principles of natural philosophy.

For the whole difficulty of philosophy seems to be to discover the forces

of nature from the phenomena of motions and then to demonstrate the

other phenomena from these forces. It is to these ends that the general

propositions in books 1 and 2 are directed, while in book 3 our explanation

of the system of the world illustrates these propositions. For in book 3,

by means of propositions demonstrated mathematically in books 1 and

2, we derive from celestial phenomena the gravitational forces by which

bodies tend toward the sun and toward the individual planets. Then the

motions of the planets, the comets, the moon, and the sea are deduced

from these forces by propositions that are also mathematical. If only we

could derive the other phenomena of nature from mechanical principles

by the same kind of reasoning! For many things lead me to have a suspicion

that all phenomena may depend on certain forces by which the particles of

bodies, by causes not yet known, either are impelled toward one another

and cohere in regular figures, or are repelled from one another and recede.

Since these forces are unknown, philosophers have hitherto made trial of

nature in vain. But I hope the principles set down here will shed some light

on either this mode of philosophizing or some truer one.

(Newton 1999, p. 382)

Newton’s approach to turning data from astronomical observations into evi-

dence about forces governing orbital motions and then about those motions

themselves was more multi-faceted than is generally appreciated. This chapter

aims to lay out his approach and the rationale behind it and then to indicate

ways it altered orbital astronomy and physics generally.

There is a commonplace answer to the question of how Newton’s Principia

resulted in exceptionally high quality evidence, an answer that can be extracted

from undergraduate textbooks in physics, if not explicitly found in them: What

Newton did in the Principia was to put forward the law of gravity, together with

his three laws of motion, by way of explaining Kepler’s so-called laws; and the

resulting theory then turned out to explain ever so much more, including the

respects in which actual planetary motions deviate from Kepler’s laws. In other

words, until a small residual discrepancy in the precession of the perihelion of

Mercury emerged in the second half of the nineteenth century, Newton’s theory

turned out to be consistent with all observations, and in that sense passed every

test to which it was put. On this view, the high quality of the evidence coming

out of the Principia lay in the range of observations with which the laws it

proposed turned out to be in agreement and the precision of that agreement.
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how newton’s principia changed physics 363

That view of the Principia offers a conception of the enterprise of science

in sharp contrast with my “process of turning data into evidence.” Science

is instead first and foremost a process of coming up with basically correct

theories.3 Once such a theory is in hand, the evidence for it will largely just fall

into place as tests of it emerge and it survives them. The task of marshalling

evidence itself presents no special challenge save for an occasional need for

ingenuity in devising new, more telling tests. Granted this is a stick-figure

summary. Even in this form, however, it explains why textbooks in science

include so little discussion of details of the evidence.

As a preliminary step toward motivating the view of the evidence for New-

ton’s theory to be presented below, let me offer two objections to the view

I have just sketched. First, it distorts history. For example, Kepler’s rules for

calculating orbits were far from established at the time Newton began drafting

the Principia. Indeed, they appear never to have been called “laws” before the

Principia.4 Furthermore, a number of so-called tests of Newton’s theory were

not expressly offered as tests of it at the time. A blatant example of this is

Cavendish’s experiment, which in physics textbooks is usually presented as a

decisive test of Newton’s law of gravity even though Cavendish himself said

that what he was doing was to measure the (mean) density of the Earth.5

A second objection lies in Newton’s own outspoken dismissal of hypothetico-

deductive evidence. As quoted above, Newton claimed in the first edition of the

Principia to have derived the law of gravity from phenomena of orbital motion;

and at the end of the second edition he added that “hypotheses, whether

metaphysical or physical, or based on occult qualities, or mechanical, have no

place in experimental philosophy” (Newton 1999, p. 943). Important to note

here is Newton’s lifelong reason for dismissing hypothetico-deductive evidence:

“For if the possibility of hypotheses is to be the test of the truth and reality of

things, I see not how certainty can be obtained in any science; since numerous

hypotheses may be devised, which shall seem to overcome new difficulties”

(Newton 1978, p. 106). That Newton was responding to such worries alone

gives reason for examining whether he had an alternative approach.

This chapter does not aim to argue against deductivist accounts of evidence.

It lays out an alternative account of the logic of the evidential reasoning in

gravitation research and the way in which this logic derives from the Principia.

3 Through most of this chapter theory designates bodies of lawlike relations among quan-
tities. Here, however, it designates more a way of conceptualizing a range of phenomena.
Sylvain Bromberger has labeled those two senses of “theory” “theory1” and “theory2” in
Bromberger (1992).

4 Curtis Wilson (2000, p. 225) has noted that Kepler’s orbital rules appear never to have been
called “laws” in print before Leibniz did so shortly after publication of the first edition of
Newton’s Principia.

5 Cavendish (1798) simply assumed the law of gravity throughout. Had he been trying to
test it, he would have at least varied the masses of the spheres in his trials.
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364 george e. smith

This alternative, I claim, is more accurate historically and more consistent with

Newton. Most of all, however, I want to claim that, on its very face, it is a more

tenable account of why the Principia had the effects it did on how evidence is

developed in physics.

15.2 Complexity and parochialism: the evidential problem

At the time Newton began drafting the Principia in 1685, there were several

competing approaches to calculating planetary orbits, at least seven of which

were known to him. Kepler’s approach employed the ellipse and his area rule –

planets sweep out equal areas with respect to the Sun in equal times – but he

did not use his 3/2 power rule – the semi-major axes of the ellipses vary as the

2/3 power of the orbital periods – to infer the lengths of the semi-major axes

directly from the periods. Instead, he inferred these lengths from observations.

Jeremiah Horrocks found that he could improve on Kepler’s Rudolphine Tables

by inferring the semi-major axes directly from the periods, which were known

to very high precision (Wilson 1978). The other five approaches employed

some alternative to Kepler’s area rule for determining where each planet is on

its orbit at any given time. Ismaël Boulliau (1657, pp. 29–31) used a geometric

construction involving the empty focus. Thomas Streete (1661, pp. 53f. and

39f.) used this same geometric construction, but followed Horrocks in inferring

the semi-major axes from the periods. Vincent Wing (1651, p. 44ff.) initially

used an oscillating equant – that is, a center of equiangular motion oscillating

about the empty focus – and later (1669, pp. 130, 144, 151, 170, 176) switched to

his own geometric construction. And Nicolaus Mercator (1676, pp. 163–171)

used a still different geometric construction.6

Of these different approaches, Kepler’s was computationally the most com-

plicated. None of them gave predictions that were consistently within the

accuracy of pre-telescopic observations (Wilson 1989). The errors were more

or less comparable in all seven – around a third of the apparent width of the

Moon. The only thing common to all of them was the ellipse, which is striking

because the orbits are actually so near to being circular; the most elliptical of the

orbits then known, Mercury’s, has a minor axis only two percent shorter than

its major axis. Equally striking, the ellipse itself was something that Newton

did not consider appropriate to use as evidence for his law of gravity (Smith

2002b).

A question accordingly at the forefront of orbital astronomy in 1679 when

Hooke first put the matter to Newton, and still in 1684 when Halley did the

same, was which of the different ways of calculating orbital trajectories was

to be preferred. The brief tract Newton had registered with the Royal Society

in December 1684, “De Motum Corporum in Gyrum,” gives an answer to

6 Mercator precedes his account of his new hypothesis with an extensive review of Kepler’s
area rule and alternatives to it.
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how newton’s principia changed physics 365

the question: “The major planets orbit, therefore, in ellipses having a focus

at the center of the Sun, and with their radii drawn to the Sun describe areas

proportional to the times, exactly as Kepler supposed” (Newton 1967–1981, VI,

p. 49). A plausible construal of Newton’s reasoning here is that Kepler’s (and

Horrocks’s) calculation rules admit of a physical explanation – they result from

an inverse-square centripetal force – while the competing rules of calculation

appear unlikely to do so. On this construal, the evidential problem to which

Newton was offering a solution was one that had been posed by Kepler: given the

imprecision of observation and measurement, any number of distinct curves

can fit observations to any given level of precision; only physical considerations

can pick out the true curve from among these. That, however, is not the

evidential problem Newton addressed in the Principia, for by the time he

began drafting it a few weeks later, he had come to see ways in which orbital

motion poses a far more ramified challenge.

Specifically, Newton had come upon a deep reason why none of the ways of

calculating the orbits were yielding results within observational accuracy. In the

registered version of “De Motu” he had concluded that there are what we would

now call inverse-square centripetal acceleration fields not merely around the

Sun, but also around the Earth, Jupiter, and Saturn.7 He saw no reason why the

inverse-square accelerative tendency toward, for instance, Jupiter exhibited by

its four known satellites would not extend all the way to the Sun, so that Jupiter

and the Sun would be interacting with one another. If they do interact, then

this interaction should not produce any change in the motion of the center of

gravity of the system. (This is just the principle of inertia applied to a system of

interacting bodies.) From this, Newton reached an extraordinary conclusion

in an augmented version of the “De Motu” tract that did not become public

until 1893:

By reason of the deviation of the Sun from the center of gravity, the cen-

tripetal force does not always tend to that immobile center, and hence

the planets neither move exactly in ellipses nor revolve twice in the

same orbit. There are as many orbits of a planet as it has revolutions,

as in the motion of the Moon, and the orbit of any one planet depends

on the combined motions of all the planets, not to mention the action

of all these on each other. But to consider simultaneously all these causes

of motion and to define these motions by exact laws admitting of easy

calculation exceeds, if I am not mistaken, the force of any human mind.

(Newton 1962, pp. 256 and 281)8

7 While Newton never employed the term “field,” my use of it is not so anachronistic as
it might at first seem, for he did speak of centripetal motive forces being “propagated
through the surrounding regions” (Def. 8).

8 I have altered the translation along lines derived from Curtis Wilson. This passage did not
become public until Ball (1893).
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366 george e. smith

In other words, no calculation scheme like Kepler’s or any of the others was

ever going to yield exact predictions, not for the comparatively uninteresting

reason that observation itself is always imprecise, but for the far more important

reason that the true motions are too complex to allow exact computation.

Newton was not the first to decry the complexity of true motions in the

world. Both Galileo and Descartes had concluded that motion under air resis-

tance forces (the other topic of Newton’s Principia) is too complex to allow a

science (Galileo 1974, 224; Descartes 1985–1991, III, p. 9f). Newton knew that

Descartes had said much the same of the motions of the planets, adding that

their trajectories are sure to change from one epoch to another:

Finally, we must not think that all the centers of the Planets are always

situated exactly on the same plane, or that the circles they describe are

absolutely perfect; let us instead judge that, as we see occurring in all

natural things, they are only approximately so, and also that they are

continuously changed by the passing of the ages.

(Descartes 1991, p. 98)

This raised a second worry: not only might Keplerian motion be but one of

several comparably accurate approximations to the true trajectories, whose

complexity defies exact description; but also, Kepler’s and all the other approx-

imations might be mere epochal parochialisms, projected from a few decades

of observations that were assumed to be representative, but instead were sys-

tematically misleading historical accidents.

As noted earlier, Newton saw his Principia as illustrating a new way of doing

science. I contend that Newton’s new “experimental philosophy” – as he came

to call it – was in response to the complexity of the real world and the risk

that our straightforward empirical access to it is parochial. That is, it is an

approach to developing evidence in the face of, first, a complexity that leaves

room for many competing descriptions of observed regularities and, second,

a lack of any immediate means of obviating respects in which the observed

regularities we invoke as evidence might be misleadingly parochial. In forming

this new approach, Newton introduced a number of changes in approach that

have persisted at least in the subsequent history of gravitational research, if not

in physics generally. It is to these changes that we now turn.

15.3 The Newtonian conception of theory

One change came out of Newton’s realization that physics – or, more specifically,

mechanics – cannot help but include, within its scope, its own theory of

measurement. Newton hints at this in the Preface to the first edition of the

Principia when he concludes that “geometry is founded on mechanical practice

and is nothing other than that part of universal mechanics which reduces the

art of measuring to exact propositions and demonstrations” (Newton 1999,
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p. 382). The point emerges more forcefully in the opening section of the

book, “Definitions.” This section might just as well have been called “Critical

Reflections on Measurement.” The definitions of quantity of matter or mass,

quantity of motion (our momentum), and force, besides indicating how the

terms are going to be used in the Principia, emphasize their measures. Indeed,

the definitions of quantity of matter and quantity of motion expressly identify

each as “a measure.” The discussions following their definitions make clear

that both mass and force are what we now call “theoretical quantities.” That is,

values for them must be inferred from other measurements and the inferences

in question presuppose theoretical claims within mechanics. In the case of mass

Newton even invokes a pendulum experiment to justify inferring values from

weight (Newton 1999, pp. 404 and 807).

Following the explicit definitions is the famous Scholium on space and time,

the central concern of which is the distinction between “absolute, true, or

mathematical space, time, and motion” and “relative, apparent, or common

space, time, and motion.” The space, time, and motion that we observe fall

into the relative, apparent, or common category. Values in the absolute, true, or

mathematical category have to be inferred from them. In the paragraph ending

the Scholium, Newton remarks:

It is certainly very difficult to find out the true motions of individual

bodies and actually to differentiate them from apparent motions, because

the parts of that immovable space in which the bodies truly move make

no impression on the senses. Nevertheless, the case is not utterly hopeless.

For it is possible to draw evidence partly from apparent motions, which

are the differences between true motions, and partly from the forces that

are the causes and effects of the true motions . . . But in what follows, a

fuller explanation will be given of how to determine true motions from

their causes, effects, and apparent differences, and conversely, of how

to determine from motions, whether true or apparent, their causes and

effects. For this was the purpose for which I composed the following

treatise.

(Newton 1999, p. 414f)

Viewed from the perspective of the rest of the treatise, the natural way to

interpret what Newton is saying here is that true motions are ones for which all

theory-mediated measurements of the relevant forces yield the same values. But

then, not just values of mass, force, and quantity of motion, are theory-mediated;

so too are values of velocity.

Newton may not have been the first to realize that physics must include its

own theory of measurement. In one respect the point is obvious, for mea-

surement is itself a physical process and measurements in mechanics involve

mechanical processes. Still, Newton does appear to have been the first to

appreciate two of its implications. One is that any method of measurement
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368 george e. smith

is provisional, subject to replacement by a method that is deemed preferable at

some later point. Newton expressly calls attention to this in the case of time:

In astronomy, absolute time is distinguished from relative time by the

equation of common time. For natural days, which are commonly con-

sidered equal for the purpose of measuring time, are actually unequal.

Astronomers correct this inequality in order to measure celestial motions

on the basis of a truer time. It is possible that there is no uniform motion

by which time may have an exact measure. All motions can be accelerated

and retarded, but the flow of absolute time cannot be changed. The dura-

tion or perseverance of the existence of things is the same, whether their

motions are rapid or slow or null; accordingly, duration is rightly distin-

guished from its sensible measures and is gathered from them by means

of an astronomical equation. Moreover, the need for using this equation

in determining when phenomena occur is proved by experience with a

pendulum clock and also by eclipses of the satellites of Jupiter.

(Newton 1999, p. 410)

Newton’s defense of sidereal time by appealing to the pendulum clock and the

eclipses of the satellites of Jupiter is striking because both of these presuppose

theories that were first published in the 1670s – the latter including a theo-

retical redetermination of simultaneity in astronomy.9 The evidence for both

the regularity of pendulum clocks and the eclipses of Jupiter’s satellites in turn

invokes sidereal time. In other words, a confluence of theoretical considera-

tions lies behind the choice of sidereal time. But then, if preferred methods of

measurement are subject to change as new theoretical considerations emerge,

any lawlike relationship between measured quantities must also be provisional,

subject to change as science advances.

The second implication of physics having to include its own theory of mea-

surement that Newton appears to have been the first to appreciate is less spec-

tacular, but no less important. It concerns how theory-mediated measurement

can enter into evidence. Insofar as all measurement presupposes theoretical

considerations of one sort or another, there is no reason to insist that a theory

be firmly established first, before new methods of measurement are derived

from it. Huygens in 1659 had used his theoretical laws for the cycloidal and

conical pendulums to measure the strength of surface gravity in two differ-

ent ways, obtaining the same value to four significant figures (Yoder 1988).

Huygens, however, seems never to have viewed the stability, convergence, and

precision of his measurements as evidence for the theory of uniform gravity

from which he derived his pendulum laws. Newton saw not only this, but also

that in the long run such stability, convergence, and precision of measurement

9 The former presupposed the theory of the pendulum in Huygens’s Horologium Oscillato-
rium of 1673, and the latter, Olaus Römer’s determination of the finite speed of light in
1676.
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Figure 15.1 The figure accompanying both Propositons 10 and 11 on elliptical orbits

in the First Edition

cannot help but be a primary form of evidence for any theory in mechan-

ics. But then, success in theory-mediated measurement should be regarded as

evidence for a theory right from the outset, even before any other evidence for

it is available.

Freeing quantities like force and time from any specific way of measuring them

allowed them to be considered in the abstract, as mere mathematical quantities

separate from any question about physical mechanism. This in turn allowed

Newton to introduce a new way of employing mathematical theory in physics.

Galileo and Huygens had used mathematics to derive testable consequences

from their theories of motion. Newton, by contrast, developed a generic theory

of motion under centripetal forces, deriving results not only for inverse-square

forces, but also for forces that vary linearly with distance, that vary as the

inverse-cube of distance, and finally that vary as any function whatever of

distance. Two consecutive propositions of Book I of the Principia illustrate this

new form of mathematical theory (Figure 15.1):

Proposition 10: Let a body P revolve in an ellipse; it is required to find the

law of centripetal force tending toward the center [C] of the ellipse.

Solution: The force varies as CP directly.
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Proposition 11: Let a body P revolve in an ellipse; it is required to find the

law of centripetal force tending toward a focus [S] of the ellipse.

Solution: The force varies inversely as the square of SP.

(Keep these two in mind, for I will be making a further point about them in

the next section.) In both of these, questions about how such centripetal forces

might be physically effected are irrelevant. Book I of the Principia consists of

more than ninety “if-then” propositions linking motions to forces, forces to

motions, and macrophysical forces to microphysical forces composing them;

throughout, force is treated as a quantity, independent of what brings it about.

Book I is best described as giving a generic mathematical theory of motion

under forces directed toward a center with no regard to how such forces might be

physically realized. Mathematical theory of this sort is a second way in which

Newton changed physics.

Late in Book I Newton indicates why he wants a generic mathematical theory

in which forces are treated without regard to the question of the physical

mechanisms producing them:

Mathematics requires an investigation of those quantities of forces and

their proportions that follow from any conditions that may be supposed.

Then, coming down to physics, these proportions must be compared with

the phenomena, so that it may be found out which conditions of forces

apply to each kind of attracting bodies. And then, finally, it will be possible

to argue more securely concerning the physical species, physical causes,

and physical proportions of these forces.

(Newton 1999, p. 588)

The passage brings out two points. First, generic mathematical theory for

Newton is an instrument for turning data into evidence, more specifically for

enabling phenomena to answer theoretical questions about physical forces and

processes. The idea is to have generic mathematical theory and phenomena

together dictate physical theory. Second, Newton is prepared to leave questions

within physical theory open when he can’t find phenomena to answer them. In

particular, he answered questions about the physical species of celestial orbital

forces – they are one in kind with terrestrial gravity – and questions about their

physical proportions – the law of gravity; but he found no way of addressing

their physical causes. His theory of gravity was rejected by many of the leading

figures of his time precisely because it left the question of the cause of gravity

open, and therefore offered no explanation of how gravitational forces can act

over vast distances. A third way in which Newton’s Principia ended up changing

physics was by making limited physical theory – theory without mechanistic

explanations – respectable.

The phrase, limited physical theory, describes a methodological innovation.

I would be remiss not to point out how revolutionary that innovation also was
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from a substantive standpoint. Newton was the first to propose that physical

theory focus on fundamental kinds of force. In doing so he introduced an

intermediate level of theory, between mere description of observed regularities

in the manner of Galileo’s Two New Sciences, on the one hand, and laying out

full mechanisms in the manner of Descartes’ Principia, on the other. Newton’s

Principia showed that this intermediate level of theory, with laws of force but

no mechanism, is still sufficient to answer a whole host of questions about

observed regularities – especially questions about whether observed regular-

ities, as described, are suitable for playing a role in evidence. This, I take to

be the point Newton was making in his remark about his predecessors having

“hitherto made trial of nature in vain” in the passage from the Preface to the

first edition I quoted in Section 15.1. It is to this intermediate level of theory

that we now must turn.

15.4 Evidential reasoning in Newton’s Principia

The features of Newton’s approach identified so far give Newtonian theory what

Pierre Duhem called an “abstract, symbolic” character. But as Duhem himself

showed, that character need not be peculiar to generic theories. To appreciate

the advantage Newton found in insisting on a generic theory of motion under

centripetal forces, we need to look in detail at how he reasoned from orbital

phenomena to physical proportions of force.

Newton inferred that the force acting on the planets is centripetal from

Kepler’s area rule, and he inferred that it is inverse-square first from Kepler’s

3/2 power rule, and then more strictly from the absence of precession of the

orbits. The following three theorems from his generic mathematical theory are

the “inference-tickets” licensing those inferences:

From Propositions 1–3: A body sweeps out equal areas in equal times

with respect to a second body if and only if the net force on the body is

compounded of a centripetal force directed toward the second body and

the whole accelerative force acting on the second body.

(Newton 1999, pp. 444–448)

From Corollaries to Proposition 4: The periodic times of bodies moving

uniformly in circular orbits about a central body vary as the 3/2 power of

their distance from the central body if and only if the centripetal forces

acting on the orbiting bodies vary inversely as the square of the distances.

(Newton 1999, p. 451)

From Proposition 45 and its Examples: The centripetal force acting on a

body moving in a nearly circular orbit is inverse-square if and only if the

perihelion (or perigee) of its trajectory does not precess.

(Newton 1999, pp. 539–545)
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We will discuss below why it was important to Newton to establish not

merely the conditionals licensing his inferences from phenomena, but the

bi-conditionals as well.

Each of these enabling theorems is richer than it first appears to be. In

corollaries to the first Newton adds that an increasing areal velocity with respect

to a point entails that the net force is directed forward of that point, and vice

versa. In a corollary added in the second edition to the second, Newton points

out that the period varies as the distance to the power n (where n need not be

an integer) if and only if the centripetal force varies inversely as distance to the

power 2n − 1. And his precession theorem actually gives an algebraic formula

tying the rate of precession of a nearly circular orbit to the exponent in the

force rule:

Let θ be the angle at the force center from aphelion to perihelion in a very

nearly circular orbit; then the centripetal force varies as R(n − 3), where n =

(180/θ)2.

In other words, the enabling theorems show that a real acceleration is a theory-

mediated measure of the direction of the force on an orbiting body; the expo-

nent in the power rule relating periods to distances of a collection of bodies

moving uniformly in circular orbits is a theory-mediated measure of what we

now call the strength of the acceleration field around the central body; and

the rate of orbital precession is a theory-mediated measure of the exponent of

distance from the center in the centripetal force rule for any one orbiting body.

Still more important, if either clause in any of the three enabling bi-

conditionals holds only approximately – Newton’s phrase is quam proxime,

very nearly – then the other clause still holds quam proxime. This follows triv-

ially from the algebraic relations in the second and third cases, and Newton

expressly points it out in a corollary to the first:

From Proposition 3, Corollaries 2 and 3: The areas with respect to the central

body are as the times quam proxime if and only if the force retaining the

moving body in an orbit around the central body tends toward the central

body quam proxime.

Thus, for every “if-then” statement that Newton uses to reason from orbital

phenomena to conclusions about forces, he takes the trouble to show that

the consequent still holds quam proxime so long as the antecedent holds quam

proxime! In effect, then, the logical form of the propositions that serve to license

Newton’s reasoning from orbital phenomena is not really “if-then”, but rather

“if quam proxime, then quam proxime,” and hence the premises describing

the orbital phenomena in question are required to hold only quam proxime.

Consequently, Newton is not begging any questions about whether the area

rule or some other rule is the proper one for locating planets in their orbits as
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a function of time, for he knew that the area rule agrees with all the other rules

at least quam proxime.10

That Newton was consciously engaged in such a form of approximative

reasoning explains why he did not use Proposition 11, given above, to infer

the inverse-square proportion from the Keplerian ellipse. For, he had shown

that, when the eccentricity is small, as it is in the case of several of the planets,

the contrast between Propositions 11 and 10 – that is, between the proportion

implied by ellipses with equal areas about a focus and about the center –

becomes a problem. It is demonstrably not true that, if the trajectory is a

Keplerian ellipse quam proxime, then the exponent in the force rule is −2

quam proxime. Current textbooks typically do present Newton as reasoning

from the Keplerian ellipse to the inverse-square proportion, and this inference

is certainly inviting on its face. Newton, however, was more careful than these

textbooks. Nowhere, not even in the original “De Motu” tract, did he make this

move. Instead he always relied on the 3/2 power rule and the absence of orbital

precession to infer the inverse-square (Smith 2002b).

Newton’s not inferring the inverse-square from the Keplerian ellipse, together

with his taking the trouble to show that the “if-then” statements he did employ

hold in quam proxime form, provides the strongest evidence that he was self-

consciously engaged in approximative reasoning. There are several other signs

of it as well. The phrase, “quam proxime,” occurs 139 times in the Principia.

The numerical summaries of the observed relations between periods and mean

distances at the beginning of Book III all display some deviation from an exact

3/2 power relation, and Newton openly acknowledges that the Moon is not in

perfect accord with the area rule and that its orbit is not stationary. Moreover,

Newton had decided before he began writing the Principia that the area rule

does not hold exactly for the planets, and he had concluded while writing the

Principia, if not before, that their orbits are not perfectly stationary. Granting

that he was engaged in approximative reasoning is thus a way of absolving

him of accusations of rank hypocrisy (Lakatos 1978). Finally, it undercuts

the complaint made by Duhem and others that the law of gravity cannot

be deduced from Keplerian phenomena, taken as premises, because it entails

these premises are false: the seeming self-contradictory element of Newton’s

“deduction” disappears once the reasoning is construed as approximative.

Of course, what this means is that, strictly speaking, the evidence Newton

offers for his law of gravity shows that it is true of the motions of the plan-

ets and their satellites, but only quam proxime, only to high approximation.

Newton is perfectly aware that the orbital evidence does not show that the

law holds exactly. Nevertheless, he takes the law to hold exactly – or, what in

practice amounts to the same thing, to hold unqualifiedly within the limits of

10 See Mercator (1676).
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observational accuracy. In the third edition of the Principia, he gives a rule of

reasoning to authorize this leap from approximate to exact:

Rule 4: In experimental philosophy, propositions gathered from phenomena

by induction should be taken to be exactly or very nearly true notwithstanding

any contrary hypotheses, until yet other phenomena make such propositions

either more exact or liable to exceptions.

(Newton 1999, p. 796)11

Note the phrase here, should be taken to be. The leap from approximate to exact

amounts to a research strategy.12

This is a fourth way in which Newton’s Principia changed physics. On the

one hand, because the scope and precision of observation are limited and the

real world is complex, evidence in physics can at most show that theoretical

claims hold to certain levels of precision over a limited range of observations.

On the other hand, when appropriate requirements are met – as expressed in

the phrase, gathered from phenomena – physicists should nevertheless proceed

as if these theoretical claims hold exactly. What we need to do now is to see

how this research strategy works.

Newton appears to have required that two conditions be met before he was

willing to take the law of gravity as exact. He expressly states in Proposition 8

of Book III that he did not conclude that the inverse-square proportion holds

exactly until he had established that it holds exactly around a sphere of uniform

(or spherically symmetric) density if it holds with respect to all the particles of

matter forming that sphere (Newton 1999, p. 811). In other words, he required

there to be some configuration for which the macroscopic forces around a

body, composed out of forces toward its parts, would accord exactly with the

law. Second, he also appears to have required that there be some identifiable

circumstances in which the phenomena from which the law was inferred would

hold exactly. As the following quote indicates, the subjunctive here is Newton’s,

not mine:

if the Sun were at rest and the remaining planets did not act upon one

another, their orbits would be elliptical, having the Sun in their common

focus, and they would describe areas proportional to the times.

(Newton 1999, p. 817f.)

11 Newton adds by way of explanation for why the rule is needed, “This rule should be
followed so that arguments based on induction may not be nullified by hypotheses.”

12 Similarly, the inference that Newton can strictly speaking draw from orbital phenomena
has to be restricted as holding only over the period of time for which observations were
available, primarily from Tycho Brahe forward. Newton’s third rule of reasoning licenses
the inference to be taken to hold universally into the past and future, just as his fourth
rule licenses the inference to be taken to hold exactly, or at least to high approximation.
For reasons of space I have chosen not to go into his third rule and its strategic role in
ongoing research here.
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Newton’s theory of gravity did not show that the planets revolve in stationary

Keplerian orbits, but instead that they decidedly do not. Nevertheless, Kepler’s

area and 3/2 power rules, and also the absence of orbital precession, are special

in one crucial respect. According to the theory, each of these phenomena

would hold exactly were it not for small gravitational forces directed toward the

individual planets. (The deductions of these phenomena are where the converse

parts of the enabling bi-conditionals come into play, though here in their exact,

not their quam proxime form.) Because the actual motions of the planets are

exceedingly complex, they can be approximated to any given level of accuracy

in an indefinite number of ways. Newton is requiring the approximations from

which physical theory is “deduced” to be ones, that according to the theory,

would hold exactly in specific identifiable conditions. This is a key element of

Newton’s way of marshalling evidence in the face of complexity.

What Newton has done here is to single out a particular kind of idealiza-

tion in science: an approximation that, according to theory, would hold exactly

in certain specifiable circumstances. For want of a better word, I am going to

call idealizations of this type “Newtonian” because of the special role they

play in his approach to evidence. They include not only the phenomena from

which his theory was inferred, but also further phenomena inferred from his

theory, such as Kepler’s ellipse. Science contains idealizations of all sorts of

kinds – mathematical simplifications, schematics of experiments and appara-

tus, explanatory models, etc. They were commonplace before Newton. Both

Galileo and Huygens, for example, had taken the curved surface of the Earth

as flat in their treatment of projectile and pendular motion. My point is that

Newton singled out and placed great emphasis on one particular kind of ide-

alization: approximations to the actual world that are deduced from his theory

of gravity as holding exactly in specified circumstances. Idealizations of this sort

are not simplifications made in the process of arriving at physical theory;

they are offspring of physical theory. Idealizations of this kind and the use

to which Newton put them are a fifth way in which his Principia changed

physics.

As defined here, a Newtonian idealization requires an overarching theory

from which the claim of exactness in specified circumstances is inferred. Thus,

Newton’s law of universal gravity was not itself a Newtonian idealization,

for there was no overarching theory which entailed its exactness in specified

circumstances. Equally, Galileo’s uniform acceleration in vertical fall in the

absence of air resistance was not a Newtonian idealization; Galileo claimed

it holds exactly in this circumstance, but he did not infer this claim from

an overarching theory. As noted above, the theory of gravity in the Principia

forms an intermediate level of physical theory between mere description of

phenomenal regularities in the manner of Galileo’s Two New Sciences, on the one

hand, and laying out full mechanisms in the manner of Descartes’s Principia,

on the other. Intermediate though it may be, this level of theory is nevertheless
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sufficient to assign certain phenomenal regularities the status of a Newtonian

idealization.

In general, what Newtonian idealizations do is to shift the focus of ongoing

research to deviations from the ideal – that is, to discrepancies between theoret-

ically deduced, idealized approximations to the world and the world itself. This

shifting of the focus in research to discrepancies between theory and obser-

vation is a sixth way in which Newton’s Principia changed physics – perhaps,

the most conspicuous way. It was with Newton that the phrase “exact science”

took on its current meaning. Instead of explaining away such discrepancies, as

for example Galileo had invariably done, they became a source of continuing

evidence that had promise of becoming increasingly discriminating. The com-

plexity of the actual motions thus became not an impediment to high-quality

evidence, but historically the source of it! And, having discrepancies between

theory and observation became not a negative, but a positive.

Newton generally left research into such discrepancies and what they tell us

about the world to future generations. The one exception was the non-Keplerian

motion of our Moon. In his solution for the systematic deviation from the area

rule known as Tycho’s variation, Newton starts from the idealization of the

Moon in a circular orbit with the Earth at the center and first determines

how the gravitational force of the Sun would distort this orbit, elongating it

in a direction perpendicular to the line from Earth to Sun. He then calculates

the deviation from the area rule, obtaining seven-eighths of Tycho’s value,

and he ends by pointing out that including the effects of orbital eccentricity

would make the calculation still more accurate. Notice what is happening

here: one idealization, a simple circular orbit, is being replaced by another

idealization that gives a better approximation, the idealization now known

as the “variational” orbit produced by the perturbing effect of the Sun on

the simple circular orbit. This process can continue, yielding a sequence of

successive idealizations that should achieve increasingly closer agreement with

observation. They are nonetheless all idealizations.

Newton gets an even more impressive result for the mean motion of the

line of nodes, the 18-year cycle in lunar and solar eclipses known since the

Babylonians, obtaining a result within three-tenths of one percent without

considering eccentricity. The Moon’s orbit is exceedingly complex; no attempt

just to describe it geometrically had ever come close to the level of accuracy

Kepler and others had achieved for the planets. Newton’s announced purpose

in making his calculations was to show that the best hope for genuine progress

lay not in conventional observational astronomy, but instead in his theory of

gravity and a sequence of deduced successive approximations.

Systematic deviations from Keplerian motion and other Newtonian idealiza-

tions can be thought of as a kind of phenomena in their own right. Only no one

can observe them. They arise from the residual discrepancies between observa-

tion and idealizations deduced from theory – that is, from the difference that
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remains after Newtonian idealizations are subtracted from observation. I prefer

to call them “second-order phenomena” for just this reason. They presuppose

specific theory, and they cease having any meaning – they cease to exist – with-

out that theory. As remarked above, on Newton’s approach the focus in ongoing

research shifts from primary phenomena and pursuit of a theory covering them

to residual discrepancies between that theory and observation. With this shift,

the goal in research becomes one of identifying second-order phenomena and

determining what they are telling us about the world. If indeed the actual

planetary motions are complex to a degree that exceeds exact mathematical

description, then residual discrepancies will always remain. The requirement

put on ongoing research is that the increasingly refined, and hence more com-

plicated, idealizations result in continually smaller discrepancies.

Notice that, when the focus shifts in this way, further research is being pred-

icated on the theory, and hence the theory has become an instrument entering

constitutively into ongoing research. Earlier I said that Newton’s generic math-

ematical theory was a tool for turning data into evidence – more specifically

for turning phenomena into evidence for physical theory. Now we see how his

physical theory was no less a tool for turning data into evidence – this time,

second-order phenomena into evidence about such things as what other forces

are contributing to the complex motions of the planets and their satellites. This

is a seventh way in which Newton and his Principia changed physics. Before

him the primary role of physical theory was to explain observed phenomena.

With him, that role became subsidiary, superseded by the role physical theory

is to play in ongoing research. This was the change that such contemporaries

as Leibniz and Huygens had the most trouble seeing and appreciating.

15.5 Beyond the Principia: the logic of the continuing evidence

The Principia ends up spotlighting a number of potential second-order phe-

nomena beyond the specific lunar inequalities for which Newton obtained

results. There were also the past irregularities in the supposed 75-year return of

what we call Halley’s comet; the thoroughly confusing, not-yet-characterized

departures of Saturn and Jupiter from Keplerian motion; and the as-not-yet-

confirmed precession of the perihelia of the planets entailed by Newton’s theory

of gravity. The discrepancy between Newtonian theory and observation that

became historically most important, however, was the precession of the apogee

(or perigee) of the Moon. The apogee of the Moon shifts in very complicated

ways from one orbit to the next. This precession nevertheless has a well-behaved

mean value: on average the apogee moves forward slightly more than 3 degrees

per revolution. Newton had used his precession theorem to calculate the effect

of the gravitational force of the Sun, obtaining a mean precession of 1 degree,

31 minutes, 28 seconds – essentially half the observed value. A question he

never managed to answer was why the Sun’s gravity could readily account for
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90 percent of the Moon’s mean departure from the area rule and more than

99 percent of the mean motion of the nodes, yet only 50 percent of the mean

motion of its apogee.

Newton was less than candid about this discrepancy in the Principia. In an

appendix to the first English translation in 1729, however, John Machin, the

orbital astronomer who was closest to Newton during the 1720s, made the

problem clear to all:

But the [mean] motion of the apogee, according to this method, will be

found to be no more than 1◦37′22′′ in the revolution of the moon from

apogee to apogee, which (according to observations) ought to be 3◦4′7.5′′.

So that it seems there is more force necessary to account for the motion

of the moon’s apogee than what arises from the variation of the moon’s

gravity to the sun, in its revolution about the earth.

But if the cause of this motion be supposed to arise from the variation of

the Moon’s gravity to the Earth, as it revolves round in the elliptic epicycle,

this difference of force, which is nearly double the former, will be found

to be sufficient to account for the motion, but not with the exactness as

ought to be expected. Neither is there any method that I have ever yet met

with, upon the commonly received principles, which is perfectly sufficient

to explain the motion of the moon’s apogee.

(Machin 1729, p. 30f.)

Machin went on to concede that, so far as he could see, it is impossible to derive

the motion of the apogee and the alteration of the eccentricity “from the laws

of centripetal forces.”

During the 1740s Euler, Clairaut, and d’Alembert took up the problem,

each concluding that solar gravity could account for only half the observed

precession. Clairaut went the furthest, for he took the eccentricity of the lunar

orbit into consideration. Specifically, he adapted a method of Euler’s to derive

all the terms for the Sun’s effect in which eccentricity occurs to the first power,

and still found Newtonian theory giving only half of the observed motion.

Based on this, and some discrepancies between recent geodetic measurements

and Newtonian theory, he registered a paper with the Royal Academy of Paris

proposing that Newton’s law of gravity has to be amended with a 1/r4 term. This

provoked quite a debate within the Royal Academy. As this debate continued,

Clairaut decided to derive the terms for the Sun’s effect to the next highest order,

obtaining terms in eccentricity squared and cubed. When he calculated their

effect, he discovered to his surprise that, even though the lunar eccentricity is

less than 0.06, these higher-order terms are not negligibly smaller in magnitude

than the first-order eccentricity terms. Together with those terms they yield a

nearly exact value for the mean motion of the apogee out of the inverse-square

effect of the Sun’s gravity (Waff 1976). D’Alembert, ever the querulous one,
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went on to calculate the contribution from terms of the next highest order,

confirming that they do not mess up Clairaut’s result.

Two points should be made about Clairaut’s efforts before turning to the

historical importance of his result. First, Clairaut’s reasoning when he pro-

posed adding an inverse r4 term was that the data from planetary orbits which

Newton had used in deriving the law of gravity involved distances that were

too large to expose the need for the additional term; in other words, Clairaut

was saying that the data on which Newton had relied were parochial. Second,

the perturbational approach used in Clairaut’s calculations – and in virtually

all subsequent calculations in celestial mechanics – introduces another layer

of complication in the logic of the evidence: Clairaut was deriving not a New-

tonian idealization for a specific case of the three-body problem of the Sun,

Earth, and Moon, but instead a computational approximation to such an ide-

alization. The intractability of the mathematics stood in the way of a rigorous

derivation of the exact solution called for in my definition of a Newtonian

idealization. Given any remaining discrepancy, then, a question arises about

the extent to which it reflects imprecision in the method of calculation versus

the need for some refinement, like an unaccounted for force, in the idealized

model presupposed in the calculation.

Clairaut’s result was much heralded. In a private letter to him, Euler

remarked,

the more I consider this happy discovery, the more important it seems

to me, and in my opinion it is the greatest discovery in the Theory of

Astronomy, without which it would be absolutely impossible ever to suc-

ceed in knowing the perturbations that the planets cause in each other’s

motions. For it is very certain that it is only since this discovery that one

can regard the law of attraction reciprocally proportional to the squares of

the distances as solidly established; and on this depends the entire theory

of astronomy.13

A year later Euler made the same point in print, arguing that they could now be

certain that there are inverse-square forces between Jupiter and Saturn causing

the confusing irregularities in their motions that had been observed:

since M. Clairaut has made the important discovery that the movement

of the apogee of the Moon is perfectly in accord with the Newtonian

hypothesis . . . , there no longer remains the least doubt about this

proportion . . . And if the calculations that one claims to have drawn from

this theory are not found to be in good agreement with observations, one

will be always justified in doubting the correctness of the calculations,

rather than the truth of the theory.

(Euler 1752, p. 4f.)

13 Letter from Euler to Clairaut, 29 June 1751, in Bigourdan (1929, p. 38f.); translation from
Wilson (1980, p. 143).
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The hyperbole in these pronouncements is not so extreme as it may at first

appear. As Euler explained in his Theory of the Moon’s Motion of 1753,14 the

mean motion of the apogee provides an exceptionally sensitive measure of the

exponent in the rule of centripetal force. The exponent is exactly −2 if and

only if the orbit is perfectly stationary in the absence of any forces beyond the

centripetal force holding it in orbit. The trouble, of course, is that the Moon’s

orbit is not stationary, but precesses on average 3 plus degrees per revolu-

tion. Even so, as Newton showed in the Principia, one can still conclude that

the centripetal force on the Moon is inverse-square, quam proxime. The ques-

tion whether it is exactly inverse-square can then be addressed by identifying

forces beyond the Earth’s gravity and seeing whether any discrepancies remain

once the effects of these forces are taken into account. How is one to iden-

tify such further forces? By first taking into account the gravitational forces

from the Sun and the planets, and then seeing what discrepancies, if any,

remain.

This brings me to an eighth way in which Newton’s Principia changed physics.

His approach opened the way to a new form of evidence – evidence indirectly

accruing to a theory from the success of research predicated on it. The original

evidence for Newton’s law of gravity showed at most that it holds to high

approximation, yet he took it to hold exactly and deduced idealizations from

it. This strategy leaves open the question, how exact is the law? We now see that

ongoing research on deviations from these idealizations can continue to bring

evidence to bear on the law in general and on this question in particular – albeit

indirect evidence. Clairaut’s result, together with the observed lunar precession,

provided direct evidence that, whatever other forces are perturbing the lunar

orbit, they are much smaller than the perturbing force from the Sun’s gravity.

Indirectly, however, it provided evidence that Newton’s law of gravity holds to

a still higher level of approximation than his original evidence implied. More

generally, focusing research on deviations from Newtonian idealizations and

demanding progressively smaller discrepancies between observation and the

idealized model of the world is a strategy for exposing limitations in this law.

Correlatively, because the idealizations are deduced from the law, taken as exact,

evidence accrues to the law from continuing success in pinning down robust

physical sources of still remaining deviations.

I claim that Newton’s new approach to marshalling evidence was a response

to the complexity of the world. Those before Newton despaired of any such

complexity, concluding it would always limit the quality of evidence that can

be achieved in science. What Newton did was to find a way to turn the very

complexity into a source of increasingly more telling evidence. This, to me, was

the ultimate genius of the Principia.

14 Euler (1753, pp. 71–72); translation in Wilson (1980, p. 144).

Downloaded from Cambridge Books Online by IP 171.67.216.21 on Sun Nov 22 12:31:06 GMT 2015.
http://dx.doi.org/10.1017/CBO9780511994845.019

Cambridge Books Online © Cambridge University Press, 2015



















how newton’s principia changed physics 381

The logic of this evidence needs to be made clear, for the Clairaut example

can be misleading. At first glance, one might think that Clairaut deduced the

theoretical mean motion of the lunar apogee, and its close agreement with

observation therefore provided hypothetico-deductive evidence for the law

of gravity. That is a mistake. For Clairaut to have deduced the motion, he

would first have had to assume that no other forces are at work beyond the

perturbing force of the Sun – a question that was surely still open. (Newton

himself at one point intimated that the missing one and a half degrees in the

mean precession of the lunar orbit might be coming from the Earth’s magnetic

field (Newton 1999, p. 880).) Rather, Clairaut was only deducing the effect

of a specific perturbing force entailed by Newton’s theory of gravity. More

generally, all such calculations of orbital motions in celestial mechanics are

merely deducing the effects of the forces specified. When the result of any

such calculation matches observation very closely, the appropriate conclusion

is that any further perturbing forces either do not exist or are of much lesser

consequence. A failure to match observation leaves open the possibility that

some other force is making a significant contribution. A less outspoken version

of Euler’s statements about the strong evidence Clairaut had provided for the

inverse-square would still have been valid even if it had turned out that the

missing one and a half degrees was from the Earth’s magnetic field.

To put the matter differently, the test to which Newton’s theory is put by

the deviations from his idealizations is more subtle than a simple hypothetico-

deductive construal suggests. Newtonian idealizations are by definition ones

that, according to the theory of gravity, would hold exactly in specified cir-

cumstances. But then any deviation from them must result from some physical

departure from those circumstances, an additional celestial force not yet taken

into consideration. The implication, in other words, is that any deviation from

an idealization must be physically significant within the context of the theory –

this in contrast, for instance, to being merely a reflection of the mathematical

scheme that happened to have been chosen in curve fitting. The test to which

Newtonian theory is put in ongoing research centers on the question, Is every

deviation from a Newtonian idealization physically significant? The evidence

that accrues to Newtonian theory comes from pinning down robust physi-

cal sources of deviations – a continuing process that ought to result in ever

smaller discrepancies between observation and the idealized representation of

the world. Whenever all residual discrepancies drop below a then-current level

of accuracy of observation, the appropriate conclusion must have a somewhat

Popperian flavor: at least for the moment, observation has ceased providing

any basis for identifying either further complications in the world or respects

in which theory is inadequate.

The conclusion, any other perturbing forces are of much lesser consequence, is

a variant of a problematic auxiliary assumption, all forces acting on the planets

other than the designated gravitational forces have very small effects, required
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in hypothetico-deductive construals of the evidence. Both are variants of Karl

Hempel’s the constituent bodies of the system are subject to no forces other than

their mutual gravitational attraction – his paradigmatic example of a “proviso”

in his paper, “Provisos: A Problem Concerning the Inferential Function of Sci-

entific Theories” (Hempel 1988). On the account of the logic of the evidential

reasoning I am offering, these are not assumptions in the deductions of celestial

mechanics at all. The deductions are spelling out the (idealized) consequences

of a set of specified forces. The point of the resulting Newtonian idealizations

is not as such to test the theory of gravity by making predictions with it, but

rather to address the question, are any forces beyond those specified of con-

sequence? Hempel’s provisos, instead of being assumptions in the deductions,

are conclusions that emerge when the answer to this question is no – that is,

when the discrepancies between the calculated and the observed motions are

sufficiently small.

Our sense that celestial mechanics over a period of centuries generated

extraordinary support for Newton’s law of gravity stems not from its having

continually yielded predicted motions within observed accuracy (which, in

fact, it never really did), but from the success in pinning down – that is,

identifying and further confirming – the physical sources of forces responsible

for ever more subtle complexities in the observed motions. The extent to which

orbital motions are dominated by gravitational forces has been among the most

remarkable findings of celestial mechanics.

A long tradition of carelessly talking about evidence in celestial mechanics

as if it were straightforwardly hypothetico-deductive has obscured the extent

to which the focus of ongoing research has been on questions about further

forces. In saying that Newton’s theory of gravity has been an instrument in

post-Principia research in celestial mechanics, I mean more than just that this

theory has been presupposed in instance after instance of evidential reasoning

throughout that research. Because the overall pattern has been one of successive

approximations, the evidence for the physical sources of the increasingly smaller

deviations from the current ideal presupposes not only Newtonian gravity, but

also the previously identified sources of the larger deviations from the earlier

ideals. In other words, the ongoing evidential reasoning has presupposed the

theory of gravity in an increasingly ramified fashion. To question the law of

gravity is to throw into question a huge collection of facts (or, if you prefer,

quasi-facts) about the world that post-Principia research has established. The

burden of proof required to discard the law of gravity thus became increasingly

large – which is the same thing as saying that the law became increasingly

entrenched.

At the beginning of this chapter I posed a question about the much higher

quality of evidence after the Principia than before it. The continuing evidence

in gravitation research, and not Newton’s original evidence, is the high-quality

evidence in question. Listing all the evidence of this sort that has unfolded
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over the last 300 years would be a Herculean task. Still, it is instructive to list

a few highlights: (1) Clairaut’s prediction of the month of return of Halley’s

comet in 1759 after taking the gravitational forces of Jupiter and Saturn into

account; (2) Laplace’s 1785 discovery of the 890-year “Great Inequality” in the

motions of Jupiter and Saturn; (3) Leverrier and Adams deducing the existence

of an eighth planet, Neptune, from residual anomalies in the motion of Uranus

(1846); (4) the Hill–Brown theory of the Moon (1919), involving more than

1400 physically significant terms, which finally brought lunar theory to the

level of accuracy of the planets and revealed as well that the Earth’s rotation is

not uniform, and hence that sidereal time is not an exact measure of time.15

The key point, however, is that the process of research is continuing, for

there will always be discrepancies. The difference now is that they are at levels

of significant figures of which Euler and Clairaut, much less Newton, scarcely

ever dreamed.

15.6 Parochialism and the continuity of evidence

The glaring omission in my list of highlights is the precession of the perihelion

of Mercury, the discrepancy that finally falsified, so to speak, Newton’s law of

gravity. Newton already knew that most of the apparent precession of Mer-

cury’s perihelion is just that – apparent, stemming from the precession of the

equinoxes, the 26,000-year wobble of the Earth. He had no way to calculate

the true precession implied by his theory of gravity, in part because he had no

way to determine the mass of Venus. By the end of the nineteenth century it

became clear that Newton’s theory was 8 percent slow for the true 225,000-year

precession of Mercury’s orbit. This 43 arc-seconds per century residual proved

recalcitrant: Newtonian theory was unable to provide any physical source for

it, and hence it appeared not to make physical sense within the context of that

theory. Later, of course, it turned out to be evidence for the new theory of

gravity of Einstein’s general relativity.

This residual discrepancy in the very slow motion of Mercury’s perihelion

shows how Newton’s response to the complexity of orbital motion was, at the

same time, a response to the risk that our observations are somehow parochial.

What better way was there to expose any such parochialism than to push his

theory for all it is worth until some subtle discrepancy emerges that might

shed light on just how it is parochial? The obvious alternative, contra Newton’s

fourth Rule of Reasoning, was to try to obviate parochialism from the outset

by proposing a wide range of competing theories compatible with the available

data and then identifying cross-roads experiments to choose among them or to

falsify them one-by-one. One problem with this alternative was the degree to

15 These four as well as other contributions from continuing research in orbital mechanics
are discussed in Smith (forthcoming b).
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which the complexity of the world would have limited the quality of evidence

in trying to decide early among the competing theories. The more serious

problem, however, was the absence of any way of assuring that the list of

proposed alternatives would cover respects in which the available data were

indeed parochial. The specific respect in which Newton’s data are now known

to have been parochial was not something anyone imagined at the time.

The residual in the precession of Mercury’s perihelion also brings a dis-

tinction into sharper focus that was alluded to in the preceding section, the

distinction between Newtonian idealizations and curve-fits. At the end of the

nineteenth century Simon Newcomb prepared a new set of planetary tables

that, together with the theories of the orbits underlying them, remained the

basis for orbital predictions until the switch to direct numerical integration of

the equations of motion on high-speed computers in the 1980s. Newcomb’s

tables were based on Newtonian gravity plus an added term in the calculation

of the secular precession of the perihelia of the four inner planets. This term,

which turned out to amount to a fudge factor, consisted of a constant times

the mean motion of the planet in its orbit.16 It added 43.37 arc-seconds per

century in the case of Mercury, and less for the other planets. With this term

included, the calculated orbits involved an element of curve-fitting, and hence

they were no longer, strictly speaking, Newtonian idealizations. No longer could

any systematic discrepancy between the calculated and observed precessions

be automatically taken to be symptomatic of some physical source not yet

taken into account. For, the discrepancy might instead represent some physi-

cally arbitrary feature in the curve-fit. In particular, suppose a new systematic

discrepancy were to emerge in the case of Mercury much smaller than the prior

43 arc-seconds, say a discrepancy around 0.4 arc-seconds. Why should that

discrepancy automatically be taken as a sign of some yet-to-be-noted physical

effect when it could just as well be attributed to the choice of mean speed as the

curve-fitting parameter or to the decision not to include terms in mean-speed

squared?

Both Newtonian idealizations and curve-fits can be carried out in sequences

of successive approximations in response to a complex world. Curve-fits aim at

prediction, with the mathematical scheme chosen to reflect a trade-off between

accuracy of fit and calculational ease. Least-squares curve-fits have the virtue of

minimizing the expected value of the square of the error in prediction, relative

to the adopted mathematical scheme, and errors in prediction are expected to

be Gaussian. In general, whether the curve-fitting criterion is least-squares or

otherwise, the goal is for errors in prediction to have a random character; and,

in that regard, curve-fits attempt not to highlight discrepancies, but to achieve

prediction within a certain level of precision, in the process sweeping lesser

16 Specifically 0.0000000806 times the centennial mean motion; see Newcomb (1898, p. 12).
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discrepancies under the rug. Discrepancies between Newtonian idealizations

and observation, by contrast, are not expected (or even desired) to have a

random character, for the driving research question is, what further physical

factors, if any, need to be taken into consideration?

The distinction between Newtonian idealizations and curve-fits is especially

important when worried about the possibility that available data are somehow

misleadingly parochial. With each successive approximation in curve-fitting,

physical sources of features in the data become progressively more submerged

in a welter of choices embedded in the mathematical scheme. As a consequence,

there are multiple potential sources for a recalcitrant discrepancy besides some

respect in which the accessible data are physically parochial. By contrast, the

further a sequence of successive approximations progresses with Newtonian

idealizations, the stronger the grounds are for attributing any recalcitrant dis-

crepancy to some physical parochialism. For, the alternative, that the the-

ory has been (by its own standards) radically wrong all along, is countered

by the record of success so far in pinning down robust physical sources of

discrepancies.

Within two decades of Newcomb’s new orbital tables, Einstein put forward

his theory of general relativity, and Newcomb’s curve-fitting response to the

residual in Mercury’s perihelion ceased to matter. Einstein’s relativity produced

a conceptual revolution in physics, but not really a revolution in evidence. For,

Newtonian gravity holds as an asymptotic limit of Einstein’s, specifically the

static weak-field limit. This had two important consequences. First, save for

qualifications about levels of precision, all the evidence for Newtonian gravity

carried over immediately to Einsteinian gravity. Physics did not have to go back

to an earlier time and begin reconstituting evidence. The data that had been

evidence for Newtonian gravity were guaranteed to be evidence for Einsteinian

gravity as well insofar as, under the conditions of our solar system, Newtonian

gravity amounts to an approximate special case of Einsteinian, and evidence for

a special case counts as evidence, though often of reduced strength, for the more

general theory of which it is a special case. Second, Einstein’s theory did not

out-and-out nullify the evidential reasoning supporting Newton’s theory. That

is, it did not entail that the evidence supporting the prior theory was merely

illusory, and never truly evidence at all. For, the steps in the original reasoning

can still be justified, though the justifications themselves have to be amended to

include qualifications – for example, the qualification that a Euclidean metric

provides a good approximation so long as the gravitational field is weak. If the

reasoning had not remained so justified, then the 43 arc-second residual, taken

in itself, could not have provided evidence for Einstein’s theory in the manner

in which it did, for that residual is a Newtonian second-order phenomenon

that presupposes Newtonian gravity; were the evidence for Newtonian gravity

illusory, the specific value of 43 arc-seconds would be nothing but an artifact

of an illusion.
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This point can be put in another way. The transition from Newtonian to

Einsteinian gravity certainly did entail a revolutionary discontinuity in con-

ceptual structure. Nevertheless, because Newtonian gravity holds in the static

weak-field limit, the transition did not entail any discontinuity in evidence.

The residual 43 arc-seconds per century in the precession of the perihelion of

mercury is a Newtonian second-order phenomenon that turns out to be phys-

ically significant, but only within the context of the less parochial theory. From

the point of view of Einstein’s theory, Newton’s is a limited special case reflect-

ing a systematic bias in the data to which we have ready access, in particular

orbital data from within our solar system. From the point of view of Newton’s

theory, on the other hand, Einstein’s is a more general theory – one among an

indefinite number of possible more general theories – that a strictly Newtonian

phenomenon helped single out and substantiate. The transition from Newton

to Einstein yielded the discovery that one specific respect in which the readily

available gravitational data within our solar system are parochial is that the

fields are so weak and so nearly static.

What we have here is another kind of idealization in physics: a theory that,

even though it would never hold exactly in any realizable circumstance, never-

theless holds in a mathematical limit with respect to a more general theory. Let

me call these “limit-case” idealizations. They have a different role in the devel-

opment of evidence from the Newtonian idealizations I have been emphasizing

so far. Their most important contribution is to allow evidence to remain con-

tinuous and hence cumulative across theory change, especially across theory

change involving removal of parochialisms.

Although it has gone largely unnoticed, continuity of evidence is itself a form

of evidence. Of course, the continuity of evidence from Newton to Einstein

cannot be evidence for Newton’s theory itself, or even Einstein’s. It is evidence

for something more basic that is common to both. In taking the huge inductive

leap from inverse-square gravity and the orbits of six planets to universal

gravity, Newton was making two tacit, but nonetheless indispensable taxonomic

assumptions: (1) gravity marks a distinct natural kind or, to use Newton’s

phrase, a physical species; and (2) orbital motions of our planets and their

satellites represent a pure enough example to typify this species as a whole.

Both of these assumptions, at the time Newton made them, could not help but

fall largely in the category of wishful thinking.

The research predicated on Newton’s law of gravity over the next two cen-

turies succeeded spectacularly in reducing the gap between theory and observa-

tion; and this success provided support for these two taxonomic assumptions.

All of this success nevertheless came from phenomena within our planetary

system over a very short period of astronomical time. Consequently, none

of it spoke directly to the possibility that gravity is an accidental feature of

our solar system, in much the way that many geological phenomena are mere

artifacts of the Earth’s history, and not symptomatic of deep physical laws.
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Besides revealing the weak-field parochialism of our planetary system, gen-

eral relativity has enabled data from the universe at large to become evidence

bearing on gravitation theory. A prerequisite for continuity of evidence in

theory change is that the taxonomy underlying the old theory remain essen-

tially intact within the new theory. The fact that evidence remained continuous

from Newtonian to Einsteinian gravity has accordingly provided much stronger

support than ever before for the claim that gravity marks a distinct physical

species.

Surprising though it may be, limit-case idealizations are something else that

Newton introduced in the Principia and hence a ninth way in which this book

changed physics. Newton, of course, had concluded that the data supporting

the theory of uniform gravity acting along parallel lines developed by Galileo

and Huygens were parochial, coming as they all did from the narrowly con-

fined region near the surface of the Earth. This theory and the evidence for it

were nonetheless important to Newton for a series of reasons: (1) he expressly

invokes results by Galileo confirming that the acceleration of gravity is indepen-

dent of weight as evidence that mass is proportional to weight (Newton 1999,

p. 806); (2) he similarly invokes Galileo’s vertical fall and parabolic projection

and Huygens’s pendulum results as evidence for his first two laws of motion,

and indeed Huygens’s pendulum measurements of surface gravity offered the

best evidence for those laws (Newton 1999, p. 424); and (3) Huygens’s mea-

sured value of surface gravity, which presupposed uniform gravity acting along

parallel lines toward a flat surface, provided crucial evidence that terrestrial

gravity extends to the Moon (Newton 1999, pp. 803–805).

The way in which Newton chose to treat uniform gravity as a limit-case of

universal gravity will surprise anyone not thoroughly familiar with the Prin-

cipia. Newton does not argue that Galilean gravity is simply an approximation

to inverse-square gravity over small distances – that is, distances over which

the variation in the acceleration of gravity is too small to matter. Instead, he

treats it as a limit-case of gravity that varies linearly with distance from the

center of a spherical Earth, specifically the limit at the surface as the Earth’s

curvature approaches zero. The statement of this limit-case idealization occurs

in Section 10 of Book I of the Principia, in a corollary to one of the propositions

on hypocycloidal pendulums – that is, pendulums the arc of which is defined

by the trajectory of a circle rolling not on a flat plane, but on the underside of

a spherical surface (Figure 15.2):

Prop. 52, Cor. 2. Hence also follows what Wren and Huygens discovered

about the common cycloid. For if the diameter of the globe is increased

indefinitely, its spherical surface will be changed into a plane, and the

centripetal force will act uniformly along lines perpendicular to this plane,

and our cycloid will turn into the common cycloid. But in that case the

length of the arc of the cycloid between that plane and the describing

point will come out equal to four times the versed sine of half of the arc
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Figure 15.2 The figure accompanying Propositions 51 and 52 on isochronous motion

of pendulums

of the wheel between that same plane and the describing point, as Wren

discovered; and a pendulum between two cycloids of this sort will oscillate

in a similar and equal cycloid in equal times, as Huygens demonstrated. But

also the descent of heavy bodies during the time of one oscillation will be the

descent Huygens indicated.

Moreover, the propositions that we have demonstrated fit the true consti-

tution of the earth, insofar as wheels, moving in the earth’s great circles,

describe cycloids outside this globe by the motions of nails fastened in their

perimeters; and pendulums suspended lower down in mines and caverns

must oscillate in cycloids within globes in order that all their oscillations

may be isochronous. For gravity (as will be shown in Book 3) decreases in

going upward from the surface of the earth as the square of the distance

from the earth’s center, and in going downward from the surface is as the

distance from that center.

(Newton 1999, p. 555f., emphasis added)
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As Newton shows later in Book I, his universal gravity entails that, below and

up to the surface of a uniformly dense sphere, the net gravitational force varies

linearly with distance, while above the surface it varies as the inverse-square

(Newton 1999, pp. 593–597 and 617f.).

Galileo’s and Huygens’s results can be shown to hold to high approximation

in inverse-square gravity so long as the vertical distances are small.17 What then

does Newton gain with his limit-case idealization? In Huygens’s measurement,

the strength of surface gravity is inferred, via his law of the cycloidal pendulum,

from the measured period, which he had shown does not vary with the length

of the arc of the bob. This isochronism was crucial to Huygens’s measurement

beyond its being explicit in the law. Thanks to isochronism, no attention needed

to be given to the length of the bob’s arc and whether it was varying during the

measurement of the period. Isochronism was accordingly a key factor in the

claimed precision of Huygens’s measurement, a precision important to New-

ton. Now, hypocycloidal pendulums are isochronous under gravity that varies

linearly with distance from the center (Prop. 51), but not under inverse-square

gravity! Therefore, what Newton’s specific limit-case idealization enabled him

to show was that the logic underlying Huygens’s measurement is not nullified

when uniform gravity acting along lines parallel to one another is replaced by

his universal gravity. (Notice that this is precisely what Newton said in the por-

tion of the quotation I italicized above.) Remarkably, the Principia thus actually

goes to the trouble of confirming continuity of evidence in the transition from

Galilean to Newtonian gravity.

15.7 Newton or Newtonian?

Employing limit-case idealizations to maintain continuity of evidence across

theory change is the ninth and last of my ways in which the Principia changed

how evidence is developed in physics. Table 15.1 recapitulates the nine ways for

the convenience of the reader.

I see these not as nine distinct ways, but as nine aspects of a single change: a

new approach in which theory is first and foremost an instrument for developing

evidence, and evidence of increasingly telling quality is then brought to bear

on it indirectly through the research predicated on it. More important than this

summary description, however, is the degree to which these nine elements mesh

with one another to form a coherent whole. I claim that they gain this unity

from their being a response to Newton’s conclusion that the true motions of

the planets are hopelessly complex and his worry that the data to which we

have ready access may be misleadingly parochial. I have trouble imagining a

more reasonable response to the complexity of the true motions and the likely

17 Doing so amounts to treating uniform gravity acting along parallel lines as a mere curve-fit
approximation to Newton’s universal gravity.
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Table 15.1 Nine aspects of how Newton’s Principia changed physics

1. Physics has to include its own theory of measurement

2. Develop generic mathematical theory to provide “inference-tickets”

3. Restrict physical theory to principles that phenomena dictate

4. Leap from approximative evidential reasoning to exact theory

5. Idealizations that would hold exactly in specified circumstances

6. Shift focus of ongoing research to deviations from such idealizations

7. Physical theory becomes an instrument for turning data into evidence

8. Evidence accrues to a theory from success of research predicated on it

9. Limit-case idealizations enable continuity of evidence across theory change

parochialism of our observational situation than this one. One can scarcely

say of those who have traced the path initiated by the Principia that they have

“made trial of nature in vain.”

Two and a half years after the Principia was first published, Huygens published

a response to Newton’s theory of gravity, Discourse on the Cause of Gravity,

bound together with his Treatise on Light. In the Preface to the latter he offers a

wonderfully succinct statement of the then prevailing view about how evidence

is to be developed in empirical science:

One finds in this subject a kind of demonstration which does not carry with

it so high a degree of certainty as that employed in geometry; and which

differs distinctly from the method employed by geometers in that they

prove their propositions by well-established and incontrovertible princi-

ples, while here principles are tested by the inferences which are derivable

from them. The nature of the subject permits of no other treatment. It is

possible, however, in this way to establish a probability which is little short

of certainty. This is the case when the consequences of the assumed prin-

ciples are in perfect accord with the observed phenomena, and especially

when these verifications are numerous; but above all when one employs the

hypothesis to predict new phenomena and finds his expectations realized.

(Huygens 1888–1950, XIX, p. 454)18

Newton’s famous pronouncement in the General Scholium that he added at

the end of the second edition of the Principia twenty-three years later was

presumably, at least in part, a response to this statement by Huygens:

I have not as yet been able to deduce from phenomena the reason for

these properties of gravity, and I do not feign hypotheses. For whatever

is not deduced from the phenomena must be called a hypothesis; and

18 The English translation is from Matthews (1989, p. 126). The hypothesis which Huygens
had most in mind was the longitudinal wave theory of light.
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hypotheses, whether metaphysical or physical, or based on occult qual-

ities, or mechanical, have no place in experimental philosophy. In this

experimental philosophy, propositions are deduced from the phenomena

and are made general by induction.

(Newton 1999, p. 943)

Newton, however, says nothing more about his approach and why it may be

better. In particular, nowhere in the Principia does he invoke the complexity of

the orbital motions to argue either that too many disparate hypotheses can meet

Huygens’s requirements or that a hypothetico-deductive approach offers less

promise of bringing to light the physical sources of small discrepancies between

theory and observation. Indeed, nowhere in the Principia does he even intimate

that his alternative approach involves remotely the logical intricacy that I have

attributed to it. A natural question, then, is whether the approach I have laid out

is better called Newtonian rather than Newton’s. How much of it did Newton

himself see?

While this question is clearly of historical interest, especially to Newton schol-

ars, it is not of central importance to this chapter. The goal of this chapter has

been to lay out a picture of the general logical structure of the evidence across

the history of research in Newtonian gravity and to trace key constituents of this

logical structure to Newton’s Principia. The data entering into this evidence

extends from Tycho Brahe’s efforts a century earlier well into the twentieth

century in the case of orbital motion. As crucial to the history of research in

Newtonian gravity as Newton and his Principia were, this research was carried

out by a large community that stretched across many generations. The indi-

viduals forming that community focused far more heavily on specific, narrow

questions in evidence, and not on the general logic of the evidential reasoning

across the entire history. Consequently, although what those individuals said

and thought is relevant, it is of limited weight when judging the adequacy of the

picture of the logic presented in this chapter. One should think of this chapter

as emulating the perspective of a review article, unusual only in the scope of

time covered and the limited attention given to specific items of evidence. The

decisive issue in judging the picture of the overall logic presented here should

be its coherence.

That said, let me return to the question of how much of my proposed

“Newtonian” approach to evidence Newton himself saw. My guess is, all of its

key constituents and, at least on occasion, their potential for coming together

to form a whole. Much of my reason for saying this is “autobiographical”

and hence not of much moment for others: I came to see this logic from

repeatedly working through the Principia while teaching it cover-to-cover.

On a less personal note, each of the items listed in Table 15.1 has been tied

in this chapter to specific passages in the Principia. I chose Clairaut’s work

to illustrate continuing indirect evidence from success in using the theory
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as a tool in ongoing research, but I could almost as well have used Newton’s

quantitative results on other lunar inequalities. Those results, moreover, are not

the only place where Newton proposes to proceed by successive approximation

to increasingly refined idealizations – what I. B. Cohen (1980, pp. 3–154) called

the “Newtonian style.”

Arguing that the Principia provides explicit basis for each of the nine items

in my list is one thing; arguing that Newton saw much or all of the logical

structure I claim they form is another. The argument for that has to come from

more subtle features of his text, such as his precise phrasing of his Rules of

Reasoning and his careful use of the subjunctive when discussing whether the

orbits of the planets are Keplerian and stationary. There are also features of the

Principia that make totally good sense if he was paying attention to nuances

in the logic I have proposed, but are difficult to explain otherwise. The most

notable of these are his refusal to infer the inverse-square variation from the

Keplerian ellipse and his treatment of Galilean uniform gravity as a limiting

case of gravity that varies linearly with distance. Finally, in a similar spirit, my

picture of the logic of evidence in the Principia absolves Newton of stupidity

(or dishonesty) in claiming to have derived the law of gravity from phenomena.

Saying that Newton saw much of the logic I have described does not mean

that there was some moment when he had a clear, comprehensive vision of the

whole picture and thereafter consciously fashioned the Principia accordingly.

He appears to have been fully aware from early on that his inferences from

phenomena involve “if quam proxime, then quam proxime” reasoning. Propo-

sitions establishing this quam proxime form of relevant “if-then” statements

occur in the very first draft of Book I, and even the registered version of the

“De Motu” tract shows signs of his knowing that the quam proxime form of “if

a Keplerian ellipse, then inverse-square” does not hold (Smith 2002b, p. 40f.).

Not so clear is when, and how fully, Newton saw that deviations from what

I have called Newtonian idealizations can provide an evidential basis for a

sequence of successive approximations in ongoing research. When he first calls

attention to the intractable complexity of planetary motion, in the augmented

version of “De Motu,” he presents the vagaries as an obstacle in determining the

proper Keplerian orbits and seems resigned to never being able to do anything

constructive with the deviations from Keplerian motion (Newton 1962, p. 281).

In the initial draft of what became Book III of the Principia the inequalities in

the lunar orbit are treated only qualitatively, and the intent seems merely to

be to eliminate the apparent counterexample the Moon offers to Kepler’s rules

(Newton 1934, p. 577). My suggestion, then, is that Newton saw the possibility

of using the deviations as the basis for successive approximations when his

quantitative results on the lunar inequalities emerged, between the first draft

of Book III in 1685 and the final draft in late 1686 or early 1687.

Newton had good reasons to be cautious about putting too much of the

evidential burden for universal gravity on success in pinning down the physical
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sources of deviations from Keplerian motion. In contrast to the limited quan-

titative results he achieved on the restricted form of the three-body problem

involving the Sun, Earth, and Moon, he obtained no quantitative results at all

on the three-body problem posed by the Sun, Jupiter, and Saturn. Worse, the

factor of two error in his derivation of the precession of the lunar apogee raised

the distinct possibility that the Earth’s magnetism was contributing to this

effect. Newton tells us that the magnetic force, “in receding from the magnet,

decreases not as the square but almost as the cube of the distance, as far as I

have been able to tell from rough observations” (Newton 1999, p. 810);19 and

he knew that a superposed inverse-cube centripetal force is precisely what is

needed to make an orbit precess (Newton 1999, pp. 535–539). If, however, non-

gravitational forces have any significant effect on the motions of the planets or

their satellites, the prospects for developing continuing evidence for universal

gravity out of the vagaries of the motions is not so straightforward. For, laws of

these non-gravitational forces would first have to be established, independently

of those vagaries, and even with those laws in place, problems would poten-

tially remain in specifying conditions for their applicability to specific celestial

motions – for example, what is the fractional iron content of the Moon?

From his work on the tides Newton knew how much more difficult quanti-

tative analysis becomes when non-gravitational forces are involved. If they are

not virtually negligible in orbital motions, then the process of pinning down

physical sources of deviations would likely be long and maybe tortuous, and

the evidence accruing to universal gravity would be of reduced strength.

Furthermore, we should not lose sight of the limits of observational accuracy

in astronomy during Newton’s lifetime. The need to correct observations for

the effects of solar parallax and atmospheric refraction had long been recog-

nized, but the precise magnitudes of those corrections remained under dispute

throughout Newton’s lifetime, and no consensus had been reached on the need

for a further speed-of-light correction at the time the Principia was published.20

The need for still further corrections for the aberration of light and the nutation

of the Earth emerged shortly after Newton died (Bradley 1728 and 1748). Thus,

the prospects for increasingly precise observation of the sort needed to support

successive approximations beyond the first level of refinements became much

clearer only after Newton.

A prominent physicist responded to the account of the evidence for Newto-

nian gravity given above by remarking, “Newton was lucky.”21 That is surely

correct on two counts. He was lucky that a relationship as mathematically

19 Newton was not in error here, for the dipole effect of a magnet gives rise to an inverse-cube
variation.

20 Cassini still insisted that the irregularity in the timing of the eclipse of Io came from an
inequality in its orbit; see Halley (1694).

21 Kenneth G. Wilson, in conversation.
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simple as his law of gravity remained intact across two centuries of pursuit

of ever greater precision.22 And he was lucky in the degree to which gravity

dominates celestial motions, making the task of marshalling evidence out of

those motions far easier than it would otherwise have been.23 Newton had no

basis for expecting either of these eventualities to work out remotely as well as

they did. Gravitation research has been successful, however, not merely because

the empirical world happened to cooperate, but also because it has followed

an approach that enabled continuing evidence to be brought to bear from

increasingly subtle complexities in the motions. Its following that approach

was not a matter of luck. In his research in optics Newton conducted experi-

ment after experiment, with only slight variations, in order to address possi-

ble loopholes in the experiments that he ultimately published.24 In the Prin-

cipia Newton shows a similar constant concern for evidential loopholes that

22 The algebraic simplicity of the law as Newton formulated it was an automatic consequence
of his inferring the law from phenomena by means of approximative reasoning. For, this
blocked him from incorporating any feature into the law unless the phenomena dictated
it, and insofar as the original phenomena amounted to first-order approximations to the
real motions, nothing in them was going to dictate further complications. But that gave
all the more reason to expect that a need for complications might well emerge as research
went beyond those first-order approximations. For example, the law does not include
time as a variable – something that might at least have raised questions early on.

23 A letter Newton wrote to Leibniz in 1693 shows that he anticipated this possibility:

For since celestial motions are more regular than if they arose from vortices and
observe other laws, so much so that vortices contribute not to the regulation but to
the disturbance of the motions of planets and comets; and since all phenomena of the
heavens and of the sea follow precisely, so far as I am aware, from nothing but gravity
acting in accordance with the laws described by me; and since nature is very simple, I
have myself concluded that all other causes are to be rejected and that the heavens are
to be stripped as far as may be of all matter, lest the motions of planets and comets be
hindered or rendered irregular.

(Newton 1959–1977, III, p. 287; emphasis added)

Perhaps Newton is here being disingenuous with Leibniz, who had published his own
vortex theory of Keplerian motion four years earlier, but he knew perfectly well that
tidal phenomena do not all follow precisely from the laws described by him, and his
suggestion that celestial phenomena follow precisely was at best wishful thinking. (Two
years before this letter Newton had asked Flamsteed for observations of Jupiter and
Saturn over a fifteen-year period, presumably because he wanted to answer the question
of how precisely their motions follow from the law of gravity.) The evidence that gravity
is the overwhelmingly dominant force in celestial motions was incomparably stronger
a century after this letter to Leibniz, when Laplace was setting to work on his Celestial
Mechanics. The extraordinary quality of evidence achieved in gravitation research over
the two centuries following the Principia would have been far more difficult to attain if
non-gravitational forces were more prominent in celestial motions.

24 To quote Alan Shapiro (2002, p. 230), “Sometimes, as in the Optical Lectures, the large
number of experiments with slight variations to establish various points may seem tedious,
but Newton attempted to leave no room for objections.”
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might arise from the gap between complex motions of the actual world and

mathematical representations of them. Each of the items in my list of ways

in which the Principia changed physics surfaces in a context in which explicit

attention is given to this gap. So, regardless of how clearly Newton ever saw the

total package formed by the items listed in Table 15.1, the mutual coherence

they acquire from their forming a response to a specific evidential challenge

truly is owing to him.

A second prominent physicist offered a different response to my account:

“[Smith] makes very clear that Newton’s celestial mechanics was something

truly novel, namely that it displays the currently used method of doing mathe-

matical physics.”25 No comment on my efforts on Newton has ever pleased me

more.
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