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1. Introduction
Many animals have at least two systems for produc-

ing instrumental behavior: the habit system and the goal-
directed system (Dickinson & Balleine, 2002). These 
multiple action and learning systems are the scope of 
modern learning theory (Balleine & Dickinson, 1998a), 
which goes beyond previous models (Dickinson 1980). 
There is growing evidence that the systems responsible for 
human instrumental behavior and decision making divide 
along similar lines (Gottfried, O’Doherty, & Dolan, 2003; 
Valentin, Dickinson, & O’Doherty, 2007). However, it is 
often found that in many domains, human psychology is 
more sophisticated than that of other animals. This may 
also be true of the mechanisms of decision making. In 
particular, the human capacity for parsing and produc-
ing the complex syntactic structures of language may well 
have an impact on how we formulate plans and decide 
between available options. More specifically, language 
mechanisms allow humans to have and think with con-
cepts. This is not to say that something like human lan-
guage is necessary for concept possession but, rather, 
that thinking with internal representations that mirror the 
constituent structure of natural language is sufficient for 
concept possession. The term concept is used for a variety 
of phenomena. Some authors use it for the capacity to re-
spond in the same way to a variety of different stimuli—an 
ability that, as we use the term, could be mediated by a 
nonconceptual representation. Nor is the capacity to make 

inferences sufficient for concept possession, because in-
ferences may be made by making transitions in thought 
between nonconceptual representations. By concept, we 
mean a constituent of a mental representation: In order 
to possess concepts, a thinker must have internal repre-
sentations with a semantically constituent structure—for 
example, the familiar subject–predicate structure with 
which some individual is picked out and some property 
predicated of that individual. (For more detail, see Sec-
tion 3 below.) The commonsensical idea that people often 
reason with concepts has been vindicated and refined by a 
long tradition of work in both cognitive psychology (Mur-
phy, 2004) and philosophy (Evans, 1982; Millikan, 2000; 
Peacocke, 1992). This review applies some of those in-
sights, asking what role concepts have in generating goal-
directed human behavior.

The article is structured as follows. We start in Sec-
tion 2 by characterizing the difference between the habit-
based decision-making system and the goal-directed 
decision-making system. In Section 3, we introduce the 
distinction between conceptual and nonconceptual rep-
resentations, as clarified by work in philosophy. In Sec-
tion 4, we ask whether the goal-directed decision-making 
system in nonhuman animals makes use of conceptual 
representations. Finally, in Section 5, we suggest how that 
particular question can be addressed in humans, arguing 
that there is preliminary evidence that the operation of 
the dedicated decision-making system in humans that is 
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erable experience of the failure to obtain reward, enabling 
the system to adjust its action values and thus its preferred 
course of action. Encoding of the action–outcome contin-
gency, as evidenced by immediate and high sensitivity to 
reward devaluation, is the signature of the goal-directed 
system (Dickinson & Balleine, 2002).

A distinction between the goal-directed system and 
the habit system is most frequently drawn empirically, in 
terms of encoding action–outcome contingency (Dickin-
son, 1980), but various other contrasts drawn in the litera-
ture may turn out to be different ways to conceptualize the 
same distinction. Computational theories of instrumental 
learning can be divided into two classes: model-based and 
model-free methods. (That distinction can also be applied 
directly to psychological decision-making mechanisms 
themselves.) The goal-directed system chooses between 
available actions on the basis of some kind of model of the 
causal structure intervening between actions and possible 
outcomes. This model-based decision method contrasts 
with the model-free procedure used by the habit system. 
Yet a third way of making the distinction distinguishes 
the branching tree structure of a sequence of decisions 
encoded by the goal-direct systems, and it contrasts that 
tree structure with the cached action values relied on by 
the habit system. These could be considered as alternative 
ways to draw the distinction between the two systems that 
are usually investigated under the labels “habit-based” 
and “goal-directed.” Since much remains to be discovered 
about the nature of these two systems, it may turn out that 
the distinction between them can be drawn more precisely, 
for which the foregoing distinctions are candidates.

The division into two relatively independent systems is 
supported by differences in the neural structures involved 
in the two types of decision making. Converging evidence 
is found in electrophysiological recordings (Jog, Kubota, 
Connolly, Hillegaart, & Graybiel, 1999; Pasupathy & 
Miller, 2005) and lesion studies (Balleine & Dickinson, 
1998a; Coutureau & Killcross, 2003; Killcross & Cou-
tureau, 2003; Ramirez & Savage, 2007; Yin, Knowlton, 
& Balleine, 2004) that lay out different neuronal sub-
strates for habit-based and goal-directed decision mak-
ing in animals. Similar results supporting the idea of two 
separate systems are emerging from fMRI data in humans 
(McClure et al., 2004; O’Doherty et al., 2004; Tobler, 
O’Doherty, Dolan, & Schultz, 2007). In habit-based sys-
tems, the main structures implicated are the striatum and 
the associated dopaminergic circuitry. The results of stud-
ies of phasic dopamine responses by extra-cellular record-
ing in the midbrain and by fast cyclic voltammetry in the 
striatum are consistent with dopamine neurons being part 
of the neural basis of the habit system, although there is 
as yet no direct evaluation of the operation of this system 
after devaluation. Lesion studies do not directly elucidate 
the functional role of the phasic dopamine response.

Focusing on the habit-based system, normative mod-
els of how choices are calculated in habit-based decision 
making can now be tested in the neural networks that seem 
to be involved. Temporal difference learning models have 
been particularly influential; the system learns by making 
predictions of outcomes from various actions, undergo-

homologous to the goal-directed system studied in other 
animals does—in humans at least—make use of concep-
tual representations.

2. Habit-Based Versus Goal-Directed  
Decision Making

There is substantial evidence that in many animals, there 
are two independent mechanisms for selecting actions. 
Modeling work explains how we might benefit from hav-
ing two relatively independent decision-making mecha-
nisms operating according to different principles, and how 
different types of decisions should be divided between 
them according to their respective strengths (Daw, Niv, 
& Dayan, 2005). There are different ways in which such 
a distinction between decision-making systems might be 
drawn—for instance, according to whether short-term or 
long-term options have to be considered (McClure, Laib
son, Loewenstein, & Cohen, 2004). We want to concen-
trate on the distinction between habit-based decision mak-
ing and goal-directed decision making, as described by 
Balleine and Dickinson (1998a, 1998b; Dickinson & Bal-
leine, 1994, 2002), but in a catholic spirit, without seeking 
to prejudge important issues in the literature about how 
the distinction is precisely to be drawn.

The habit system has at its origin a strong stimulus–
response association, but has been more recently extended 
to incorporate instrumental conditioning through asso-
ciative learning (Adams & Dickinson, 1981; Dickinson, 
1980, pp. 92–93). The habit system selects from available 
actions on the basis of stored values for actions of those 
types (Packard & Knowlton, 2002). The action values ap-
proximate the long-term expectation of reward flowing 
from an action of that type. The reward need not be im-
mediate. If the action is part of a sequence, its action value 
will reflect the likelihood of reinforcement at the end of 
the sequence. Action selection does not require any think-
ing ahead, but it does depend on a considerable history of 
exploration to build up appropriate action values. Action 
values in the habit system encode an appreciation that a 
given action will tend to lead to a reinforcer, but the as-
sociative structures controlling performance encode only 
limited information about the type of reward and how it 
will arise from the action (Balleine & Dickinson, 1998a). 
The goal-directed system, by contrast, has some way of 
representing how actions lead to outcomes, where types 
of outcome are represented independently of their reward 
value. So it carries information to distinguish between 
different outcomes, such as quenching thirst and satiat-
ing hunger, whereas outcomes are treated by the habit 
system merely as reinforcers, which strengthen sensory–
motor associations. Since the goal-directed system codes 
outcomes dependent on reward value, there is a litmus 
test for goal-directed decision making. If an outcome is 
devalued—for example, by feeding an animal to satiety 
on a particular kind of food or by degrading the action–
outcome contingency—the goal-directed system can 
immediately switch to a different decision, whereas the 
habit-based system is condemned to continue to select ac-
tions that lead to outcomes that it now finds unrewarding 
(because they are devalued), until it has acquired consid-
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primates, sensitivity to reward devaluation seems to de-
pend on the orbitofrontal cortex (Baxter, Parker, Lindner, 
Izquierdo, & Murray, 2000; Critchley & Rolls, 1996). In 
humans, activity in the orbitofrontal cortex decreases in 
parallel with behavioral reward devaluation (Gottfried 
et al., 2003; Valentin et al., 2007). Evidence of (2)—that 
animals represent the causal structure of the domain of 
action—comes from several sources. It has long been 
known that rats can make good use of the information they 
gain by freely exploring a maze in the absence of rewards. 
Without such prior exploration, it takes rats several trials 
to learn to go directly to a reward placed in a consistent 
position in the maze. However, rats given prior experi-
ence of the maze go directly to the site of the reward on 
the first occasion after they discover it (Blodgett, 1929). 
This behavior demonstrates that the actions they select as 
they move through the maze on the way to the anticipated 
reward are informed by a grasp of the causal relationship 
between action and outcome. Habit-based learning would 
take more trials, with associated false turns, before a di-
rect route to the reward was learned. Choice behavior of 
macaques with orbitofrontal cortex lesions suggests that 
they fail to assign credit appropriately to a particular trial; 
instead, if they fail to receive the expected reward, the val-
ues of actions performed across a range of prior trials—
not just for the trial in which the reward expectation was 
not met—are altered (Walton, Rudebeck, Bannerman, & 
Rushworth, 2007). This result suggests that without this 
element of the goal-directed decision-making system, 
primates will be impaired in dealing properly with the 
causal structure of the action domain. Finally, recording 
from hippocampal place cells in rats shows that before 
rats follow a path, place cells are activated in a sequence 
reflecting the prospective path, and that, before rats make 
a choice about which route through a maze to follow, place 
cells are activated in turn, first reflecting one option, and 
then the other (Johnson & Redish, 2007). This is prelimi-
nary evidence that some goal-directed decision making 
proceeds by thinking through the structure of the problem 
domain from various alternative action choices to possible 
outcomes.

The orbitofrontal cortex appears to be a key compo-
nent of the goal-directed system because of its function 
of encoding the current values of various possible out-
comes as predicted by contexts and cues (Rolls, Sienkie-
wicz, & Yaxley, 1989). Depending on the relatedness of 
behavioral contexts used, the outcome values appear to be 
represented relative to the context (Tremblay & Schultz, 
1999) or in an absolute fashion (Padoa-Schioppa & Assad, 
2008), with the latter enabling transitivity. Particularly, 
the medial part of the human orbitofrontal cortex is likely 
involved in goal-directed action, as suggested by its en-
coding of the causal effectiveness of actions in procur-
ing reward (Tanaka, Balleine, & O’Doherty, 2008). The 
amygdala (Ramirez & Savage, 2007) and anterior cingu-
late (Kennerly, Walton, Behrens, Buckley, & Rushworth, 
2006) appear also to be implicated in encoding and updat-
ing outcome values. By contrast, the rat prelimbic cortex 
and the dorsal caudate are involved in learning and encod-
ing the action–outcome associations (Balleine & Dickin-

ing learning when those predictions are in error, with the 
dopamine system playing the role of broadcasting a global 
error signal, as called for by the model (Houk, Adams, 
& Barto, 1995; Montague, Dayan, & Sejnowski, 1996; 
Schultz, Dayan, & Montague, 1997). Other parameters 
suggested by temporal difference models have also been 
found to correlate with activity in various areas of the 
brain that are plausibly involved in learning and decid-
ing on the basis of cached action values (e.g., whether re-
ward was received, Lau & Glimcher, 2007; learning rate, 
Behrens, Woolrich, Walton, & Rushworth, 2007). Where 
rewards are probabilistic, animals appear able to select 
actions that maximize the probability of reward (Sugrue, 
Corrado, & Newsome, 2004, 2005). In a two-alternative 
perceptual decision task, neurons in macaque lateral in-
traparietal cortex were found to encode probabilistic ac-
tion values that are actually used to select an action; firing 
rates reflect the probability that the visual stimuli favor 
one action over the alternative, and, strikingly, it appears 
that the firing rate correlates directly with the cumulative 
sum of the log likelihood ratios associated with the vari-
ous sequentially presented stimuli until some threshold is 
reached, at which point the action to be selected has effec-
tively been decided (Yang & Shadlen, 2007). The habit-
based decision-making system also shows up in striatal 
activations during appetitive and aversive conditioning in 
humans (O’Doherty, Dayan, Friston, Critchley, & Dolan, 
2003; Seymour et al., 2004).

In comparison with the habit system, the mechanisms 
of goal-directed decision making in other animals are less 
well characterized. Even less is known about how human 
goal-directed decision-making works. Indeed, there may 
be more than one decision-making system that operates 
in a goal-directed way (cf. Rustichini, 2008). A range of 
brain areas have been implicated in goal-directed behav-
ior. Lesion work in rats points to a role of the prefrontal 
cortex and dorsal caudate (Balleine & Dickinson, 1998a; 
Yin, Knowlton, & Balleine, 2005). An actual neurophysi-
ological representation of immediate and final goals for a 
path-finding task has been found in the lateral prefrontal 
cortex of monkeys (Saito, Mushiake, Sakamoto, Itoyama, 
& Tanji, 2005). Human and animal research suggests that 
the amygdala and the orbitofrontal cortex are crucial in 
guiding goal-directed behavior (Holland & Gallagher, 
2004). In order to understand the particular roles these 
areas play, we need to probe the nature of goal-directed 
behavior. Dickinson and Balleine (2002; Balleine & Dick-
inson, 1998a) gave three conditions for decision making 
to count as goal directed: (1) The outcome should be rep-
resented when one is performing the action, (2) behavior 
should be based on knowing the causal structure of the 
domain of action (the contingency between choice and 
outcome), and (3) behavioral choices should be made ac-
cording to the motivational value of the outcomes (quality, 
quantity, and probability).

Evidence of (1) and (3) is furnished by demonstrat-
ing sensitivity to reward devaluation. As well as feed-
ing an animal to satiety on a particular type of food, an 
outcome can be devalued by inducing illness to create a 
food-specific aversion (Balleine & Dickinson, 1998a). In 
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All of those thoughts are true, but the constituent I have 
reused—the concept dog—is not itself true (or false): It 
is not a candidate for truth. Such things are concepts, and 
having them makes human thought peculiarly powerful. 
Thus, although the capacity to generalize and the capacity 
to make inferences are both necessary to concept posses-
sion, neither is sufficient: An ability to deploy representa-
tions with semantically significant constituent structures 
is also required.

Concepts are so ubiquitous in our mental lives that it 
can be hard to see how nonconceptual representation is 
possible. An example may help. Think of one of those res-
taurants in which you order dishes by numbers. The wait-
er’s order slip will be a list of numbers: “12, 23, 142, 147” 
(our Friday night Chinese meal for two). In the kitchen, 
the chef reads the numbers as a list of instructions. The 
number “142” tells him to prepare one portion of Sichuan 
beef with rice; “147” means prepare one portion of beef 
in oyster sauce with noodles. Thus, the symbols on the 
paper are a series of complete instructions, correspond-
ing to complete thoughts (not ones that can be true or 
false, like beliefs, but ones that can be satisfied/achieved 
or unsatisfied/failed, like desires and intentions). But 
the symbols themselves (“142,” “147”) have no relevant 
constituent structure. Nothing in the representation cor-
responds separately to beef, rice, or noodles. Our world 
is full of examples of nonconceptual representation. The 
Union Flag flying from the ramparts of Windsor Castle 
proudly declares that the Queen is in residence, but the 
flag has no constituent corresponding to the Queen, or to 
being in residence. Road signs similarly express complete 
truth-evaluable claims (There is a junction ahead ) or in-
structions (Do not park here) without having any relevant 
constituent structure. What makes these all examples of 
genuine representation, which surely they are, is a more 
controversial question. It is doubtless something to do 
with the circumstances in which such signs are found and 
how we tend to act in response to them. What the ex-
amples do show is that there is no bar to a representation 
that itself has no constituent structure being evaluable as 
a complete declaration or instruction, or for truth or satis-
faction. Although we, acting as theorists, would typically 
use a sentence with constituent structure to express the 
representation’s truth condition, we are not committed to 
the representation itself having any relevant constituent 
structure.

A major advantage of deploying conceptual representa-
tions should be immediately apparent. Although this merit 
is familiar, it is hard to notice that it is in any way extraor-
dinary. Only by comparison with the limitations of non-
conceptual representation does the power of a system of 
conceptual representations become clear. To return to our 
Chinese meal example, suppose the waiter had instead re-
corded our order using representations with relevant con-
stituent structures—for example, written English. Then it 
would be very easy for the chef to see the commonalities 
between the various things ordered. He could just read off 
how many portions of beef he would have to get to fill the 
order, how many portions of rice, and so on. But since the 
number-based order has no constituents corresponding to 

son, 1998b; Yin et al., 2005). Interspecies comparisons 
are complicated by anatomical differences. On the basis 
of connectivity, the rat ventral prelimbic cortex appears 
to be the homologue of the primate medial orbitofrontal 
cortex network, the dorsal prelimbic cortex is that of the 
medial prefrontal cortex, and perhaps the frontal pole is 
that of the dorsolateral prefrontal cortex (Fuster, 2000; 
Price, 2007). However, on the basis of function, the rat 
prelimbic cortex appears to be the homologue of the pri-
mate dorsolateral prefrontal cortex (see, e.g., Birrell & 
Brown, 2000; McGaughy, Ross, & Eichenbaum, 2008; 
but cf. Preuss, 1995). In any case, although there are hints 
for involvement of the human medial orbitofrontal cortex 
(Gottfried et al., 2003; Tanaka et al., 2008; Valentin et al., 
2007), it remains to be seen whether the dorsolateral pre-
frontal cortex processes goal-directed actions in humans. 
It has been widely demonstrated that sensitivity to reward 
devaluation is destroyed by sufficiently sustained train-
ing on a fixed trial type, suggesting that such overtrained 
choices are taken over by the habit system. The dorsolat-
eral prefrontal cortex does not appear to be involved in 
exercising knowledge of these overlearned rules.

In short, there is strong evidence for the existence of 
and neural basis for relatively independent habit-based 
and goal-directed decision-making systems in primates 
and other mammals. Current indications make it likely 
that there is a similar distinction in the mechanisms of 
human decision making. The purpose of this review is 
to suggest an aspect in which the human goal-directed 
decision-making system may be peculiar: in processing 
conceptual representations (for some or all goal-directed 
decisions). The next section spells out what it means for a 
representational system to be conceptual.

3. Conceptual Versus  
Nonconceptual Representation

As studied in cognitive psychology, concepts have, 
broadly, two roles. First, they are the basis on which we 
classify objects together as being instances of the same 
type of thing. We apply our concept of bird to a range 
of observed objects and thereby take the objects to have 
something in common (to share the property of being a 
bird ) (Murphy, 2004). Second, concepts are the basis for 
inferences; for example, having applied the concept bird 
to an object, we may infer that it can fly (or that it is likely 
to). Philosophers’ understanding of concepts dovetails 
nicely with these two features but emphasizes a further, 
more exacting constraint. A concept, fundamentally, is a 
reusable constituent of thought (Evans, 1982; Peacocke, 
1992). Sentences are the model: Just as words are con-
stituents of sentences and can be reused to make many 
different claims, so concepts are constituents of thoughts 
and can be reused to think many different things. For ex-
ample, beliefs are complete thoughts. They can be true or 
false. I might think there is a dog, or the cat is on the mat. 
Both complete thoughts are candidates for truth: They can 
be true or false (the first true, the second false, as it hap-
pens). But I can reuse one of the capacities that I exercised 
in thinking that first thought: I can think that dog is brown, 
dogs are warm-blooded, or even the dog is on the mat. 
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huber, Poggio, & Miller, 2001). Indeed, the absence of 
a straightforward one-shot diagnostic test for conceptual 
representation probably explains the fact that this distinc-
tion is underappreciated in the empirical literature (many 
phenomena that it would be fruitful to study empirically 
are not easy to study empirically). Systems that deploy 
conceptual representations will tend—other things being 
equal—to generalize more widely. How widely they in 
fact generalize will also depend on what the representa-
tions—conceptual or nonconceptual—stand for. We know 
that some animals, such as rats and pigeons, are capable 
of some degree of generalization, given sufficient training 
(McLaren & Mackintosh 2002; Wright & Katz 2007), but 
it is currently unclear whether they use conceptual repre-
sentations to do so.

In our rather quaint story, the animal M could represent 
the learning situation in a more general way, despite being 
limited to purely nonconceptual resources. It could deploy 
a different representation, R*, in which it would represent 
as R* any situation in which it encountered a golden-brown 
oak. Now, its learned situation-specific action–outcome 
association would extend to a wider class of situations. 
It would have some ability to generalize. Notice, how-
ever, that M still lacks completely one whole dimension 
of potential generalization that we have, since we deploy 
a singular term, a, to think about Kett’s Oak. So there are 
in-principle reasons why a system deploying only noncon-
ceptual representations will tend to generalize less widely 
from experience. And, indeed, experience with training 
other primates on reward-based tasks confirms this strik-
ing difference. A macaque may learn to link a particular 
sensory input—for instance, white dots moving to the 
right—to a particular action, like eyes moving to the right, 
to get a specific reward (Newsome, Britten, & Movshon, 
1989). However, if any part of the task is slightly altered—
for instance, the input dots turn black—then the animal 
will often have problems transferring the appropriate ac-
tion to the new situation. A natural explanation is that it 
has no conceptual representation of moving to the right. 
In the original situation, it has indeed learned a rule about 
white dots moving to the right, but it has not learned any-
thing about the property of things moving to the right as 
such. That distinction can be hard to grasp for us, thinking 
about these cases as we do through the medium of lan-
guage. Surely, if the animal has learned a rule for white 
dots moving to the right, it has thereby also learned a rule 
for dots moving to the right, or even things moving to the 
right. Or, if it has not actually learned the rule, drawing 
the appropriate inference should surely be nearly effort-
less, should it not? The commonalities are obvious to us. 
But, equipped only with nonconceptual representations, 
such commonalities are far from obvious. Since they are 
not represented explicitly via the constituent structure of 
representations, they have to be constructed and learned 
about piecemeal, case by case. So, evidence of limited 
generalization behavior is evidence that the representa-
tions giving rise to the behavior are purely nonconceptual, 
without being anything like a litmus test. Other evidence 
is needed about the nature of the mechanisms that are 
being deployed. In principle, any behavior produced by 

beef, rice, or noodles, the chef’s only way of working this 
out is much more laborious. That is a key merit of con-
ceptual representation: It facilitates the making of a wider 
range of inferences. Thus, the second of the two central 
roles that concepts play is to enable useful inferences.

Let us give two examples of the kind of inferences 
that are facilitated by a capacity for conceptual repre-
sentation. Suppose I notice that a particular tree has a 
particular property. For example, one autumn I might 
notice that Kett’s Oak is golden-brown. This thought has 
the structure Fa, with a singular term (a) that refers to 
the particular tree, and a predicate (F) that refers to the 
property of being golden-brown. Suppose, now, that I 
perform an action A—a search of my vicinity—and get 
a rewarding outcome O in this situation: a tummy full of 
particularly nourishing acorns. I can now learn to associ-
ate the action A with outcome O in situation Fa. Unless 
my valuations of outcomes change, this will make me 
more likely to perform action A if I encounter situation 
Fa again. But notice how this little piece of learning can 
take me further: It can affect what I expect in both other 
F-situations and other a-situations. When I encounter 
another golden-brown tree and think Fb, this can also 
incline me to perform action A, which may also be use-
ful: Other golden-brown things may also drop nutritious 
nuts. Similarly, if I encounter Kett’s Oak again when it is 
bare (G), not golden-brown (F), I may identify this situa-
tion as Ga. Again, because the similarity with the original 
situation is represented explicitly, what I learned about 
that situation can be carried over to this one, and Kett’s 
Oak may indeed still have some tasty nuts around it, even 
after it has dropped its leaves. This intellectual facility 
compares unfavorably with the limitations of the creature 
equipped only with nonconceptual representations; let 
us call it “M.” M, too, encounters Kett’s Oak in golden-
brown glory and deploys a nonconceptual representation, 
R, to represent the situation. Suppose M also performs ac-
tion A (search), leading to outcome O (nourishing nuts). 
M can also use its goal-directed decision-making system 
to learn that in situation R, action A tends to lead to out-
come O, and to value action A more highly as a result in 
such situations, provided he remains motivated to obtain 
O. But notice that M’s capacity to learn from this situation 
is much more limited. It has learned only that in situa-
tion R (Kett’s Oak being golden-brown), A leads to O. 
Since R has no constituent structure, M is blind to R’s rel-
evant similarity to other potentially rewarding situations, 
situations that to us—with our conceptual representation 
of the same situation—are so obviously similar that it is 
difficult at first to accept that M cannot notice it.

This little story illustrates the great advantage of con-
ceptual representation in allowing for us to generalize 
more widely from situations in which we learn. Of course, 
if M had a variety of nonconceptual representations, it 
could make just the same inference: Having conceptual 
representations makes wide generalization much easier. 
So, width of generalization is not criterial of conceptual 
representation. It is no kind of diagnostic test: Systems 
using nonconceptual representations can generalize too 
(one example might be the results of Freedman, Riesen-
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directed decision making. One well-known limitation on 
their ability to show sensitivity to reward devaluation is 
illustrative. Rats will reduce the response that leads to a 
particular foodstuff—for example, food1—from the first 
choice they have to make between available options after 
being sated, but only if they have had the chance to eat 
food1 when sated. They will show sensitivity to the reward 
devaluation only if they have had a chance to learn the 
association between the outcome (food1) and their drive 
states (hunger, or lack thereof). Similarly, rats can learn 
action–outcome associations between pressing a lever and 
the delivery of food pellets, and between pulling a chain 
and the delivery of sucrose solution (another foodstuff). 
Suppose you now make the rat thirsty and offer it a choice 
between chain and lever (in extinction). Surely it will pull 
the chain? Yes, but only if it has had previous experience 
that sucrose solution salves thirst (Balleine & Dickinson, 
1998b; Dickinson & Balleine, 1994; Dickinson, Balleine, 
Watt, Gonzalez, & Boakes, 1995), because only then has 
it learned that that outcome (the liquid) is rewarding in 
the drive state of being thirsty. The association between 
sucrose solution and thirst quenching can be learned from 
drinking freely available sucrose when thirsty. Shipley and 
Colwill (1996) suggested that the capacity of rats to gener-
alize might go further. They found in a similar experiment 
that rats could perform the nondevalued thirst-quenching 
action even without explicit trials in which they had ex-
perienced the sucrose solution when thirsty. However, it 
is possible that their rats had previously experienced the 
thirst-quenching properties of the sucrose solution outside 
the lab (Berridge, 2001). Moreover, the sucrose solution 
used by Shipley and Colwill (8%) was less concentrated 
than the one used by Dickinson and Balleine (20%). Gen-
eralization may therefore have been facilitated by the 
higher similarity to water for Shipley and Colwill’s rats, 
as compared with those of Dickinson and Balleine. Even 
Dickinson and Balleine’s original claim—that devaluation 
sensitivity requires experience of sucrose solution’s salv-
ing thirst—turns out to be too strict; there do seem to be 
significant limitations on how readily rats can make the 
generalization from leverpressing when hungry to lever-
pressing when thirsty. Moreover, the demonstrated sensi-
tivity to reward reevaluation is clear enough: The rat does 
behave in an entirely new way in the chain/lever situation, 
as a result of learning something in a different situation 
in which actions on levers and chains were not involved. 
Thus, it is clear that a habit-based system that selects ac-
tions on the basis of cached action values is a poor candi-
date to account for the phenomenon.

But, now let us focus on the limitation. We will argue 
that this type of limitation is important and best explained 
by the rats’ being limited to a system of nonconceptual 
representations. Although there are ways of explaining the 
rats’ behavior as arising from a purely habit-based sys-
tem, the standard account has them learning about and 
using knowledge of the causal structure of the domain. 
They learn that action1 (chain pulling) leads to outcome1 
(sucrose solution), and, if they do so while hungry, they 
also discover that outcome1 sates hunger. However, the 
rat’s knowledge of the association between action1 and 

a mechanism of conceptual representations could also be 
produced by a suitably detailed system of nonconceptual 
representations. The way the two types of systems would 
learn is likely to differ; but again, any particular piece of 
learning data can be accounted for by a nonconceptual sys-
tem with appropriate prior knowledge or biases. Despite 
being a deep distinction that makes widespread practical 
difference, the difference between conceptual and noncon-
ceptual systems of representation is by no means simple 
to investigate empirically. (In this respect, some readers 
may be reminded of the science of consciousness; having 
conscious experiences is a fundamental mental property, 
and being conscious surely does make a deep functional 
and practical difference to our lives—yet, it is notoriously 
resistant to direct empirical study.) Convergent evidence 
of concept-based decision making may come from several 
sources. One important source of evidence could be neural. 
The contribution of a brain region that processes syntac-
tic structures during goal-directed decision making might 
provide further indication that conceptual representations 
are in play. We would expect such an area to be activated in 
tasks when conceptual representations are deployed. Con-
versely, if it lesioned or was temporarily disrupted through 
TMS, we would expect deficits in tasks that require con-
ceptual representations. Such a demonstration would re-
quire behavioral control for the absence of internal speech 
occurring specifically during decision making. We suggest 
that where a system-driving behavior—in humans or other 
animals—is found to be implicated in the organism’s abil-
ity to generalize easily and widely from its experience, and 
where, furthermore, there is converging evidence (neural 
or behavioral) that the behavioral system relies on some 
kind of syntactic processing of representations with con-
stituent structure, there is reasonable evidence that the sys-
tem in question processes conceptual representations.

A second example will illustrate how the difference be-
tween conceptual and nonconceptual representations may 
be particularly relevant to goal-directed decision making. 
Recall the idea that a central feature of concepts is the way 
they are deployed in reasoning. Suppose I can identify a 
number of events: e1, e2, and e3. Now, using my capacity 
for conceptual representation, I learn and represent that e1 
comes before e2 in one situation and that e2 comes before 
e3 in another. It is easy for me to infer that e1 comes be-
fore e3. Intuitively, it seems that we do make these kinds 
of inferences when reasoning about what to do—at least 
sometimes. All goal-directed decision making makes use 
of the knowledge of the causal structure of the domain 
in order to infer the connection between some proximal 
action and some distal outcome via a chain of interme-
diate actions. Equipped with conceptual representations, 
we humans may be engaging in a particular subspecies of 
goal-directed decision making—one that relies on repre-
sentations with constituent structure in coming to some 
of its decisions.

4. Conceptual Representations in the  
Goal-Directed System in Nonhuman Animals

We have seen that rats show sensitivity to reward de-
valuation, which indicates that they are capable of goal-
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tion is whether the representations between which infer-
ences are made by the goal-directed decision-making sys-
tem possess constituent structure (e.g., subject–predicate 
structure). Is there evidence that conceptual representa-
tions are deployed by the goal-based decision-making 
systems found in other animals? In rhesus monkeys, con-
sequences of intended actions for goal-directed behav-
ior are thought to be represented in the lateral prefron-
tal cortex (Saito et al., 2005; Tanji, Shima, & Mushiake, 
2007). There is also a growing number of studies of rhe-
sus monkeys that describe neuronal signals that appear 
to represent concepts (Freedman & Assad, 2006; Shima, 
Isoda, Mushiake, & Tanji, 2007). For instance, when mon-
keys are trained to repeat different temporal sequences of 
behaviors (AABB, ABAB, CCDD, CDCD), neurons in 
the prefrontal cortex respond specifically to a category 
of the temporal patterns (AABB, CCDD) (Shima et al., 
2007). Thus, there is little doubt that other animals can 
generalize from situations that they have encountered to 
other, similar situations, including making generalizations 
on the basis of temporal structure. As with any ability to 
generalize, these could be mediated by representations 
without constituent structure: nonconceptual representa-
tions. The crucial question for our purposes is whether the 
monkey’s behavior transfer depends on representations 
with constituent structure (more specifically, whether 
such structured representations are deployed within the 
goal-directed decision-making system that is our focus 
here). If a monkey were able to gather a series of pieces 
of information about an individual—only putting them 
together for some behavioral purpose at a later date—that 
would suggest that they have a concept of that individual 
(although that would be a conservative test: Failure would 
not be strong evidence against concept use). As we have 
said, the undoubtedly real and important distinction be-
tween representations with and without constituent struc-
ture cannot be operationalized into a simple experimental 
test. Instead, we suggest putting together evidence from 
generalization to novel contexts with other lines of evi-
dence about the mechanisms involved.

It is undoubtedly impressive that rats and other animals 
can engage in genuinely goal-directed behavior. But our 
admiration should not blind us to the significance of the 
way in which they appear limited. That limitation suggests 
that they may be restricted to nonconceptual representa-
tions, or, if they do have concepts, that their goal-directed 
decision-making system is encapsulated and does not 
have access to their conceptual abilities. Of course, it is ul-
timately more difficult to prove absence than presence of 
conceptual representations. We need to be cautious, since 
claims about unique human capacities, as compared with 
those of other animals, had to be qualified in the past, be-
cause of subsequent empirical tests (e.g., episodic mem-
ory in scrub jays, Clayton & Dickinson, 1998; tool use by 
crows and monkeys, Kenward, Weir, Rutz, & Kacelnik, 
2005; Ottoni, de Resende, & Izar, 2005; transmission of 
group-specific types of tool use by chimpanzees, Whiten 
et al., 2007; asocial perspective taking by chimpanzees 
and scrub jays, Emery & Clayton, 2001; Hare, Call, Ag-
netta, & Tomasello, 2000; Hare, Call, & Tomasello, 2001). 

outcome1 can be generalized to the situation in which 
the rat is thirsty only if it somehow knows about the rela-
tion between outcome1 and quenching thirst (and recall 
that in order to do so, the rat must have a goal-directed 
decision-making system and not be restricted to learning 
that is based on habit/cached action values). If outcome1 
is represented nonconceptually, that may be achieved by 
giving the rat experience—outside the apparatus—of the 
fact that outcome1 is rewarding when thirsty. It could also 
be achieved by representing outcome1 with sufficiently 
general nonconceptual representation (as perhaps oc-
curred in Shipley & Colwill’s [1996] experiment, when 
the concentration of sucrose in outcome1 was only 8%). 
However, if outcome1 were represented conceptually, then 
there would be many more opportunities to make the rel-
evant generalization. Are we humans subject to the same 
kind of limitation as are the rats, or do we show evidence 
of our conceptual representations (which we undoubtedly 
have for other purposes) being deployed within the causal 
knowledge of the goal-based system? That is, of course, 
an empirical question that needs much further investiga-
tion, and there undoubtedly are situations in which hu-
mans do indeed show limitations of just this type. But it is 
also plausible that we can sometimes overcome them—at 
least, it is plausible enough so as to commend itself as 
a hypothesis for detailed empirical investigation. When 
we receive outcome1, our conceptual resources can cut in, 
allowing us to think, in this cup is a sweet, sticky, clear, 
liquid. Without doubting that humans, too, have to learn 
somehow which outcomes are rewarding and in which 
ways, we can see that this conceptual representation gives 
us many more chances to make use of existing knowledge. 
We may have no experience of the relation between sugar 
solution and thirst quenching, but experience of the con-
nection between liquids and thirst quenching or, indeed, 
experience of the connection between things in cups and 
thirst quenching would do. Our behavior is likely to be 
much less situation bound as a result. Deploying concep-
tual representations does not obviate the need to learn from 
experience, it just allows the results of that learning to be 
leveraged to a much wider range of related situations.

What about other animals? There is a large amount of 
literature—in both philosophy and comparative psychol-
ogy—about whether nonhuman animals deploy concepts 
(see, e.g., Allen & Hauser, 1996; Bermúdez, 2006; Stich, 
1978; and further articles in Hurley & Nudds, 2006), and 
whether concept use requires human-like natural language 
or some language-like syntactic ability that could be pos-
sessed by animals not endowed with the full complexities 
of a language faculty (Bermúdez, 2003; Chater & Heyes, 
1994), with some philosophers arguing that nonhuman 
animals do not deploy conceptual representations in any 
of their behavioral systems (e.g., Hurley & Nudds, 2006). 
What is new is to ask specifically about the goal-directed 
decision-making system (as studied in animals, and its 
homologue in humans), and whether it makes use of con-
ceptual representations. Goal-directed decision making 
involves reasoning about means and ends and, hence, in-
ference; but as we noted previously, inferences may be 
performed over nonconceptual representations. The ques-
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controlling for potential linguistic confounds in the task. 
Recent DTI analysis and TMS studies suggest that two 
fronto-temporal networks involved in language processing 
should be differentiated: a dorsal network that is special-
ized for phonological processing, connecting areas of the 
fronto-parietal junction with dorsal and posterior areas of 
the left inferior frontal gyrus; and a ventral network that is 
specialized for semantic processing, connecting category-
specific representations in the temporal pole with ventral 
and anterior areas of the left inferior frontal gyrus (Dev-
lin, Matthews, & Rushworth, 2003; Devlin, Rayley, et al., 
2003; Devlin et al., 2006). This division suggests that the 
capacity of the inferior frontal gyrus to encode or enable 
structured representations can be deployed in more than 
one domain—in the present article, both to the composi-
tional structure of phonetics (roughly, the way sounds can 
be recombined to make different words) and to the com-
positional structure of semantics (roughly, the way words 
can be recombined to make different sentences, where 
the words carry their meaning to the new sentences—i.e., 
the way concepts can be recombined to make different 
thoughts). Our hypothesis is that the same capacity can 
be deployed by the goal-directed decision-making system 
when reasoning with information about the relations of 
cause and effect between events in the world and between 
its own actions and those events.

Koechlin and Jubault (2006) uncovered evidence that 
can be deployed in support of our hypothesis (differing 
somewhat from their own preferred interpretation of the 
data). They started with the observation that actions can be 
chained together into sequences to form an action chunk. A 
sung melody is an action chunk. So is a learned sequence 
of buttonpresses, like LRLLRLLRLR. Once learned, an 
action chunk is available for use, as and when it is re-
quired. Contrast an action chunk with a complex rule for 
action. For example, in sorting a deck of cards, I might 
have the rule that red cards go L and black cards go R. 
The rule is complex, but the temporal sequence of each 
action chunk is simple, involving just one movement (if 
I see red, I go L) before the end of the action sequence. 
Just as individual actions can be chained into sequences, 
so can complex rules for action. I might learn three ways 
to divide up a deck of cards: by color, by whether there is 
a picture card, and by even/odd numbers (counting Queen 
as even). I can deploy these rules in sequence: color→­
picture→parity→color→color→picture→picture→­parity 
→­parity. Each of these rules is itself complex, so the se-
quence actually goes as follows:

A1:
→

A2:
→

A3:
{red→L} {picture→L} {even→L} → . . .
{black→R} {nonpicture→R} {odd→R}

Koechlin and Jobault reported bilateral fMRI activation 
in the inferior frontal gyrus (IFG) that was associated with 
subjects’ performing the task requiring switching between 
task sets, as compared with a task with the same temporal 
complexity but lacking the superordinate structure. They 
inferred that hierarchical processing is different from tem-
poral organization of goal-directed behavior, which is en-
coded in the lateral prefrontal cortex in a forward-moving 

A further caveat is that when entering the lab, humans 
are usually experienced, whereas animals are naive. With 
increased experience, animals may indeed show behaviors 
and solve tasks that naive animals do not perform (see, 
e.g., Balleine, Espinet, & Gonzalez, 2005). However, as 
the research with rats described previously illustrates 
clearly, if we want to demonstrate conceptual representa-
tions’ being used in other animals’ goal-directed decision-
making systems, it is important that we test whether they 
can solve goal-directed problems in novel situations by 
generalizing from existing knowledge. Here, it is impor-
tant that we note that the most fruitful approach to dem-
onstrating certain higher cognitive functions in animals 
(such as chimpanzees, monkeys, and scrub jays) proved 
to be the use of a naturalistic setting, thus tapping into 
natural behaviors. For the purposes of probing conceptual 
representations, we need to be clear that a generalization 
or transfer task cannot be one that is solved through previ-
ously learned, habit-based behavioral responses.

At this stage, our claim is that it is a live hypothesis that 
the goal-directed decision-making systems in other ani-
mals are restricted to nonconceptual representations—one 
that calls for experimental testing. In contrast, it is very 
plausible that humans can transcend this kind of limitation, 
at least sometimes. If we do, that would be evidence for 
conceptual representations in decision making. Of course, 
we hardly need more evidence that humans possess and 
sometimes reason with structured representations. Ver-
bal reasoning by talking aloud is one obvious example. 
In contrast, although animals (in particular—but not ex-
clusively—birds) can learn to recognize certain structures 
in language and could have some language-like capaci-
ties (Gentner, Fenn, Margoliash, & Nusbaum, 2006; Toro, 
Trobalon, & Sebastián-Gallés, 2005), and although great 
apes show some similarity to humans in the anatomy of 
language-like areas (Cantalupo & Hopkins, 2001), there 
is thought to be little chance that these language-related 
structures and capacities extend to a structured represen-
tation as adaptable, flexible, and complex as is needed for 
human language. With respect to humans, the more inter-
esting question is whether such structured representations 
are found in the operation of the goal-directed decision-
making system. Our first-person experience of deliberate 
decision making strongly suggests that it is worth looking 
further. As we shall see in the next section, there is some 
neural evidence that syntactic or grammatical mecha-
nisms are sometimes relied on in goal-directed decision 
making.

5. Testing Whether Human Goal-Directed 
Decision Making Uses Conceptual 
Representations

Our suggestion will be that neural evidence can be used 
to test the hypothesis that human goal-directed decision 
making deploys conceptual representations. The clearest 
case of deploying conceptual representations is in speak-
ing and understanding natural language—in particular, in 
parsing the grammar of natural language. So the obvious 
place to look is for differential involvement of Broca’s area 
(of the left inferior frontal gyrus) in decision-making tasks, 
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a further prediction, if humans do indeed sometimes use 
both conceptual mechanisms and concept-free mecha-
nisms in goal-directed decision making. The prediction is 
that neural data should predict patterns of transfer: Where 
we do find significant differences in IFG activation during 
learning, we should expect the results of that learning to 
be transferred to a wider class of cases. Finally, we can ask 
whether humans have the kind of limitation in their ability 
to display sensitivity to reward revaluation that is found 
in rats, as was discussed in Section 4. Our prediction is 
that humans should show a similar limitation when they 
are primed to deploy only nonconceptual representational 
mechanisms and when syntactic-processing areas in IFG 
are not active, and that they should not be so limited when 
they deploy a conceptual representational mechanism, ac-
tivating the syntactic-processing powers of areas of IFG.

6. Conclusion
Emerging evidence suggests that the long-established 

distinction between habit-based and goal-directed 
decision-making mechanisms can also be sustained in 
humans. Although the habit-based system has been ex-
tensively studied in humans, the goal-directed system is 
less well characterized. This review brings to that task 
the distinction between conceptual and nonconceptual 
representational mechanisms. We argue that one fruitful 
way of studying human goal-directed decision making is 
to investigate the extent to which it deploys conceptual 
representations.
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