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Geometry, Construction, and Intuition
in Kant and His Successors

MICHAEL FRIEDMAN

I begin with an issue concerning the interpretation of the role of intuition in
Kant's theory of geometry that has recently seen myself on one side and Charles
Parsons on the other.1 The interpretation I have defended is a version of what
one might call the logical approach to Kantian intuition - an approach first artic-
ulated by Evert Beth and Jaakko Hintikka.2 On this approach the primary role of
Kantian intuition is formal or inferential: it serves to generate singular terms in
the context of mathematical reasoning in inferences such as we would represent
today by existential instantiation. Accordingly, the primary feature that distin-
guishes Kantian intuitions from purely conceptual representations, on this view,
is their singularity - as opposed, that is, to the generality of concepts. Parsons
has objected, however, that this formal-logical approach downplays a second
feature that Kant also uses to distinguish intuitions from concepts: namely, their
immediacy. For Kant, conceptual representation is both general and mediate,
whereas intuitive representation is both singular and immediate - that is, it is
immediately related to an object. And here, Kant certainly seems to think that
the idea of immediacy adds something important - something of an episte-
mological and/or perceptual character - to the bare logical idea of singularity.
Parsons himself suggests that the immediacy in question is to be understood as
"direct, phenomenological presence to the mind, as in perception,"3 and so, this
second approach can be characterized as phenomenological. More specifically,
the primary role of Kantian geometrical intuition, in this approach, is to acquaint
us, as it were, with certain phenomenological or perceptual spatial facts, which
can then be taken to provide us with evidence for or to verify the axioms of
geometry. In this view, therefore, the question of the origin and justification of
the axioms of geometry is prior to that concerning the nature and character of
geometrical reasoning from these axioms, whereas on the logical approach, the
priority is precisely the reverse.

The particular version of the logical approach to Kantian geometrical in-
tuition that I have defended focuses on the role of Euclidean constructions
in the proof procedure actually employed in the Elements, the procedure of
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Geometry, Construction, and Intuition in Kant and His Successors 187

construction with straight edge and compass articulated in Euclid's first three
postulates. The idea is that all the objects introduced in Euclid's reasoning -
points, lines, and so on - are iteratively or successively generated by straight-
edge and compass construction from a given line segment or pair of points. The
existence of such objects - and, in particular, of an infinity of such objects - is
not simply postulated, as in modern treatments, in existential axioms; rather, it
is iteratively or successively generated from an initial object by given initial op-
erations. In this sense, Euclid - again as opposed to modern treatments invoking
Dedekind continuity, for example - is concerned only with constructive exis-
tence claims and with the potential infinite. Indeed, from this point of view, the
existence of an infinity of geometrical objects appears precisely analogous to
that of the natural numbers. Moreover, from this point of view, as I have further
argued, we obtain a plausible explanation for why Kant thinks that geometrical
representation is not purely conceptual. Conceptual representation, as Kant un-
derstands it, involves only the logical resources of traditional syllogistic logic.
But, with these resources alone, we cannot represent an infinity of objects, not
even the potential infinity of the natural numbers. Kant's recognition of this
fact, together with his appreciation of the way in which Euclid himself repre-
sents the (potential) infinity of geometrical objects by a definite procedure of
construction, can thus be taken to explain the Kantian doctrine that construction
in pure intuition, and therefore geometrical space, is a nonconceptual species
of representation.

On this interpretation, then, the infinity of space is a purely formal-logical
feature of mathematical geometry (we would express it today by saying that
formal systems of geometry have only infinite models), and the intuitive, non-
conceptual character of the representation of space is a consequence of this
same formal-logical feature (we would express it today by saying that monadic
formal systems always have finite models if they have models at all). So, phe-
nomenological or perceptual features of our representation of space play no
role whatever here. By contrast, as has been brought out especially clearly in
a recent paper by Emily Carson,4 on the phenomenological approach favored
by Parsons the order of explanation is precisely the reverse. The infinity of
space is a directly given perceptual fact - it consists of the circumstance that
any perceived spatial region belongs within a larger "horizon" as part of a sin-
gle, uniquely given perceptual space5 - and it is this perceptual fact that then
justifies or explains the use of infinity in mathematical geometry. Perceptual
space supplies the framework, we might say, within which geometrical con-
struction takes place and which, accordingly, guarantees that the constructions
postulated by Euclid can indeed by carried out.6 Even if Kant were acquainted
with modern, purely logical formulations of mathematical geometry, therefore,
he would still need to appeal to spatial intuition - that is, to phenomenological
features of our spatial perception - to justify or to verify the relevant axioms.
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188 MICHAEL FRIEDMAN

Now there is an important Kantian text that bears decisively on this issue. It
belongs to the dispute with Eberhard in 1790 and occurs in Kant's handwritten
notes that were used almost verbatim by his disciple Johann Schulze in the lat-
ter's review of Eberhard's Philosophisches Magazin. In particular, the passage
in question was used by Schulze in his review of essays by the mathematician
Abraham Kastner, and it shows, I believe, that the logical approach to Kantian
geometrical intuition must, at the very least, be supplemented by considerations
congenial to the phenomenological approach. Kant begins by distinguishing
space as described by geometry from space as described by metaphysics. The
former is generated [gemacht] or derivative, and, in this sense, there are many
spaces. The latter is given or original, and, in this sense, there is only one single
space. Kant leaves no doubt, moreover, that the infinity of geometrical spaces
is grounded in the single, uniquely given metaphysical space:

[T]he representation of space (together with that of time) has a peculiarity found in no
other concept, viz., that all spaces are only possible and thinkable as parts of one single
space, so that the representation of the parts already presupposes the representation of
the whole. Now, when the geometer says that a line, no matter how far it has been
extended, can still always be extended further, this does not mean the same as what
is said in arithmetic concerning numbers, viz., that they can be always and endlessly
increased through the addition of other units or numbers (for the added numbers and
magnitudes that are expressed thereby are possible in themselves, without needing to
belong together with the previous ones as parts of a whole). Rather, to say that a line
can be continued to infinity means that the space in which I describe the line is greater
than any line that I may describe in it. Thus, the geometer grounds the possibility of his
problem - to increase a space (of which there are many) to infinity - on the original
representation of a single, infinite, subjectively given space. This agrees very well with
the fact that geometrical and objectively given space is always finite. For the latter is
only given in so far as it is generated [gemacht]. To say, however, that the metaphysical,
i.e., original but merely subjectively given space - which (because there are not many)
cannot be brought under any concept capable of construction but which still contains
the ground of all possible constructions - is infinite means only that it consists of the
pure form of the mode of sensible representation of the subject as a priori intuition.
Therefore, the possibility of all spaces, which proceeds to infinity, is given in this space
as a singular representation. (Ak. 20, pp. 419-21)7

The explicit contrast that Kant draws here between the infinity of space and
that of the natural numbers is made even sharper a few lines later when Kant
endorses the idea that mathematics considers only the potential infinite [infinito
potentiali] and that "an infinity in act [actu infinitum] (the metaphysically-given)
is not given on the side of the object, but on the side of the thinker" - where
the latter "infinity in act" nevertheless "lies at the basis of the progression to
infinity of geometrical concepts."

It is clear, therefore, that the analogy between the infinity of space and that
of the natural numbers can only apply to space as described by the geometer.
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Geometry, Construction, and Intuition in Kant and His Successors 189

Geometry deals with a successively generated sequence of spaces (spatial ob-
jects) that is potentially infinite as a whole and thus necessarily finite at every
stage. By contrast, space as described by the metaphysician - as described in
the Metaphysical Exposition of the Concept of Space in the Transcendental
Aesthetic of the first Critique - has quite a different character. And it is pre-
cisely this special character of metaphysical space, moreover, which, for Kant,
grounds or explains the possibility of the infinity of space as described by the
geometer. So far, then, the basic ideas of the phenomenological approach ap-
pear to be vindicated. The crucial question, however, concerns exactly how
metaphysical space - "the pure form of the mode of sensible representation of
the subject as a priori intuition" - is supposed to accomplish this grounding.
Is the given infinity of space as a pure form of sensible intuition supposed to
be directly seen, as it were, in a simple act of perceptual or quasi-perceptual
acquaintance? Are we supposed to have direct perceptual or quasi-perceptual
access to such infinity entirely independently of geometry - which access we
can then use to justify or to verify the possibility of Euclidean constructions?
Both of these ideas appear to be very doubtful. For we are certainly not per-
ceptually presented with an infinite space as a single given whole; and, since
the visual field is itself always finite, it does not even appear to be true that
any perceived spatial region is directly given or perceived as part of a larger
such region. The idea of independently given phenomenological facts capable
of somehow grounding or justifying the possibility of geometrical construction
can quickly appear to be absurd.

Several pages earlier in the same notes for Schulze's reply to Kastner, Kant
himself discusses the question of explaining or justifying the possibility of
geometrical construction as follows:

[I]t is very correctly said [by Kastner] that "Euclid assumes the possibility of drawing a
straight line and describing a circle without proving it" - which means without proving
this possibility through inferences. For description, which takes place a priori through
the imagination in accordance with a rule and is called construction, is itself the proof
of the possibility of the object. Mechanical delineation [Zeichnung], which presupposes
description as its model, does not come under consideration here at all. However, that the
possibility of a straight line and a circle can be proved, not mediately through inferences,
but only immediately through the construction of these concepts (which is in no way
empirical), is due to the circumstance that among all constructions (presentations deter-
mined in accordance with a rule in a priori intuition) some must still be the first - namely,
the drawing [Ziehen] or describing (in thought) of a straight line and the rotating of such
a line around a fixed point - where the latter cannot be derived from the former, nor can
it be derived from any other construction of the concept of a magnitude. (Ak. 20, pp.
410-11).

What grounds or explains the possibility of geometrical construction, then, is
simply the immediate activity of our a priori imagination by which we draw
or describe a straight line in thought and then rotate such a line around a fixed
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190 MICHAEL FRIEDMAN

point. Indeed, Kant had already made it clear in the first Critique that it is
precisely such imaginative activity that grounds the axioms of geometry:

I can represent no line to myself, no matter how small, without drawing it in thought,
that is gradually generating all its parts from a point, and thereby first registering this
intuition.... On this successive synthesis of the productive imagination in the generation
of figures is based the mathematics of extension (geometry), together with its axioms,
which express the conditions of a priori sensible intuition under which alone the schema
of a pure concept of outer appearance can arise. (A162-3/B203-4)

And, as this passage intimates, the axioms of geometry are capable of no further
proof, because it is only via the imaginative activity in question that the relevant
geometrical concepts can be thought (compare A234-5/B287).

This last idea is given special emphasis in §24 of the second edition Tran-
scendental Deduction, which also further articulates the imaginative activity
in question. After characterizing the activity of the productive imagination as
"figurative synthesis" or "transcendental synthesis of the imagination," and ex-
plaining that figurative synthesis is a "transcendental action of the imagination"
expressing the "synthetic influence of the understanding on inner sense," Kant
illustrates his meaning as follows:

We always observe this in ourselves. We can think no line without drawing it in thought,
no circle without describing it. We can in no way represent the three dimensions of space
without setting three lines at right angles to one another from the same point. And we
cannot represent time itself without attending, in the drawing of a straight line (which
is to be the outer figurative representation of time), merely to the action of synthesis of
the manifold, through which we successively determine inner sense, and thereby attend
to the succession of this determination in it. Motion, as action of the subject (not as
determination of an object*), and thus the synthesis of the manifold in space - when
we abstract from the latter and attend merely to the action by which we determine inner
sense in accordance with its form - [such motion] even first produces the concept of
succession. (B154-5)

And in the footnote, Kant explicitly links motion in the relevant sense with the
imaginative description of space underlying the axioms of geometry:

*Motion of an object in space does not belong in a pure science and thus not in geometry.
For, that something is movable cannot be cognized a priori but only through experience.
But motion, as the describing of a space, is a pure act of successive synthesis of the
manifold in outer intuition in general through the productive imagination, and it belongs
not only to geometry, but even to transcendental philosophy.

Thus motion in the relevant sense - the pure act of successive synthesis in
space as transcendental activity of the subject - grounds or underlies geometry
by also belonging to the metaphysical consideration of space characteristic of
transcendental philosophy. As Kant puts it in §26 in the footnote at B161, it
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Geometry, Construction, and Intuition in Kant and His Successors 191

is "through it [i.e., the transcendental synthesis of the imagination] (in that
the understanding determines sensibility) that space or time are first given" as
intuitions.

In what sense is the motion in question an "action of the subject"? Kant
states in §24 that the understanding, as active subject, exerts the transcendental
synthesis of the imagination on the "passive subject [i.e., inner sense] whose
faculty it is" (B153). But it is also the case, as Kant explains at the very beginning
of the Metaphysical Exposition of the Concept of Space, that the subject of
outer sense is itself in space. Space as the form of outer sense enables us to
represent objects as outer precisely by representing them as spatially external
to the perceiving subject:

Space is no empirical concept that has been derived from outer experiences. For, in
order that certain sensations are related to something outside me (that is, to something in
another place in space than the one in which I find myself), and, similarly, in order that I
be able to represent them as outside of and next to one another - and thus not merely as
different but as in different places - the representation of space must already lie at the
basis. Therefore, the representation of space cannot be obtained from the relations of
outer appearance through experience; rather, this outer experience is itself only possible
in the first place by means of the representation in question. (A23/B38)

Space as the form of outer sense contains the point of view of the subject, from
which the objects of outer sense are perceived and around which, as it were,
the objects of outer sense are arranged.8 And it follows that by changing this
point of view - by moving in and through space - the subject can change its
perspective on the objects of outer sense.

Let us suppose, then, that by the fundamental transcendental action of the
imagination that Kant calls "figurative synthesis," the subject imaginatively
locates itself in space at a definite position (a particular point of view) and
with a definite orientation (a particular perspective on the spatial world as per-
ceived from this point of view). Such an orientation is established, for example,
by choosing three particular line segments set at right angles from a common
point.9 The objects of outer sense then appear as arranged around this subjective
point of view and thus capable of being seen from it in accordance with the cho-
sen orientation or perspective. And this much, moreover, belongs to the a priori
structure of pure spatial intuition. In particular, empirical spatial intuition or per-
ception is necessarily conceived as taking place within this already-established
formal structure. Empirical spatial intuition occurs when an object spatially
external to the point of view of the subject affects this subject - along a spatial
line of sight, as it were - so as to produce a corresponding sensation in it; and
it is in this sense, therefore, that the pure form of (spatial) sensible intuition
expresses the manner in which we are affected by (outer) objects. It is in this
sense, too, I believe, that the immediacy of pure spatial intuition, in contrast to
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192 MICHAEL FRIEDMAN

the mediate character of merely conceptual representation, is to be understood.
For, by virtue of the formal or a priori structure of spatial perception, pure spatial
intuition contains causal, indexical, and demonstrative elements not present in
merely conceptual representation. Pure spatial intuition thereby expresses the a
priori form, we might say, by which the perceiving subject can be immediately
related to (outer) objects.10

By the same fundamental action of the transcendental imagination through
which the subject imaginatively locates itself at a given point of view with a
given orientation, this subject can also, as noted above, imaginatively change
the given point of view and orientation by imaginatively moving in and through
space. In particular, the subject can imaginatively change the given point of
location by a translation through space and imaginatively change its given
orientation by a rotation around this point. Moreover, by an appropriate combi-
nation of such translations and rotations the subject can thereby imaginatively
put itself in position to perceive any outer object located anywhere in percep-
tual space. It is in this sense, I believe, that perceptual space is necessarily both
singular or unitary and infinite or unbounded. Perceptual space is singular or
unitary because any outer object must be perceivable by the same perceiving
subject, and thus all outer objects must be located within the same formal struc-
ture of possible perceptual relations: all outer objects must be reachable via
translation and rotation, as it were, from a single initial given point of view. By
the same token, perceptual space is infinite or unbounded because, although
any particular momentary visual field is indeed bounded or finite, by moving in
and through space and thereby changing its perspective, the subject changes its
visual field so as to embrace successively more and more regions of the single,
unitary perceptual space. It is in this sense - that is, kinematically - that any
given spatial region is perceived within an "horizon" eventually comprising all
possible perceptual spatial objects. And this also clarifies the sense, it seems to
me, of the otherwise puzzling idea that metaphysical space - that is, the for-
mal structure of perceptual space described in the Metaphysical Exposition -
involves an "infinity in act [actu infinitum] (the metaphysically-given) [that] is
not given on the side of the object, but on the side of the thinker."

Finally, this same formal structure of perceptual space can be seen as ground-
ing or explaining the constructive procedure expressed in the axioms of
Euclidean geometry. As we have seen, Kant takes the possibility of straight-edge
and compass construction to be grounded in the imaginative activity of drawing
a straight line via the rectilinear motion of a given point (here, in connection
with B154-5, see especially B292) and describing a circle via the rotation of
a given line. The construction of a straight line, in other words, is executed
by a translation, and the construction of a circle is executed by a rotation. (In
modern terminology, straight lines and circles appear as orbits of the Euclidean
group of motions.) The possibility of translational and rotational motion is pri-
mary, therefore, because it is given in the pure formal structure of perceptual
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space. Geometrical space is then iteratively or constructively generated within
the formal structure of perceptual space by successively applying the funda-
mental operations of drawing a straight line and describing a circle, and this is
the precise sense, I believe, in which the possibility of mathematical geometry
is grounded in or explained by the formal structure of perceptual space.11 It
does not necessarily follow, however, that the structure of perceptual space can
be taken to provide an independent epistemological justification for the axioms
of geometry - still less that there is an independently accessible realm of phe-
nomenological facts capable of providing such a justification through some kind
of quasi-perceptual direct acquaintance. The spatial intuition grounding the ax-
ioms of geometry is fundamentally kinematical, in my view, and it is expressed
in the formal structure of translational and rotational motion (in modern termi-
nology, the structure of the group of Euclidean motions). That perceptual space
in fact has or embodies this formal structure can in no way be simply read off of
our perceptual experience, as it were, independently of our knowledge of geom-
etry. On the contrary, the only way in which we know that perceptual space in
fact embodies this structure is precisely through our knowledge that geometry is
applicable to it.12 Kant's theory of pure spatial intuition provides an explanation
of the possibility of geometry - an explanation, in particular, of the nonconcep-
tual and intuitive or perceptual character of geometry. But it does not provide,
and does not attempt to provide, an independent epistemological foundation.13

II

Giving motion - understood in terms of the possible changes in position and
orientation of the subject's point of view - a central role in Kant's doctrine
of pure spatial intuition raises a variety of interpretative questions concerning,
on the one hand, the scope of geometrical construction and, on the other, the
involvement of the understanding and the transcendental unity of apperception
in the characteristic features of sensibility.

With respect to the first set of questions, it is noteworthy that Kant himself
is forced explicitly to reconsider the nature and scope of geometrical con-
struction in the course of the dispute with Eberhard - during the very same
period, therefore, when our initial texts on the infinity of space were written.
Eberhard had appealed to Apollonius's treatise on conic sections in order to
argue against the Kantian doctrine that geometrical concepts require the con-
struction of a corresponding intuition. For Apollonius uses the defining planar
characterization of a parabola, y2 = ax, without showing how to draw or delin-
eate such a curve in the plane. Indeed, although every individual point on the
curve can be constructed by straight edge and compass, the curve itself cannot
be continuously traced thereby; the latter task requires more complicated means
of construction, which are often, in contradistinction to "geometrical" construc-
tions with straight edge and compass, termed "mechanical" constructions. Yet,
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194 MICHAEL FRIEDMAN

since Apollonius is able to develop the entire theory of conic sections with-
out considering such mechanical constructions at all, it cannot be true that the
successful use of geometrical concepts always requires the construction of a
corresponding intuition.14

Kant's reply is twofold. He objects, in the first place, that Apollonius does
indeed provide a construction in intuition - not, to be sure, in the plane but
rather in space:

Apollonius first constructs the concept of a cone, that is, he presents it a priori in intuition
(this is now the first action whereby the geometer verifies beforehand the objective reality
of his concept). He cuts it in accordance with a determinate rule, e.g., parallel to a side of
the triangle that cuts the base of the cone {conus rectus) through its apex at right angles,
and proves a priori in intuition the properties of the curved line that is generated by means
of this section on the surface of the cone. He thus brings forth a concept of the ratio in
which the ordinates of this curve stand to the diameter [i.e., the relation y2 = ax], which
concept, namely (in this case) of the parabola, is thereby given a priori in intuition; and
therefore its objective reality - that is, the possibility that a thing with the properties in
question can be given - is proven in no other way except that one supports it with the
corresponding intuition. (Ak. 8, p. 191)

Thus, in his very first definition, Apollonius generates a cone by rotating an
infinite straight line in space, fixed at a given point, around the diameter of
a given circle (the base of the cone). In Proposition 1.11, he generates the
parabola from a section whose diameter is parallel to one of the sides of the
axial triangle, and proves thereby that the characteristic equation, y1 — ax,
where a is the so-called latus rectum or parameter, then holds.15 The curve is
thus derived or constructed in space, and for this reason, the ancients termed
problems involving conic sections, in contradistinction to "plane" problems
constructible by straight edge and compass, "solid" problems.16

Kant further objects, in the second place, that mechanical constructions in
the plane are completely irrelevant:

[Apollonius's editor, Borelli17] speaks of mechanical construction of the concepts of the
conic sections (except for the circle) and says that mathematicians teach the properties
of the latter without mentioning the former - which is certainly a true observation but
a very insignificant one; for instructions on how to delineate [zeichnen] a parabola
in accordance with the prescriptions of the theory are only for the artist, not for the
geometer.*

And the footnote then clarifies the distinction that Kant has in mind here:

*The following may serve to secure against the misuse of the expression, the construction
of concepts, of which the Critique of Pure Reason frequently speaks and by which it has
first precisely distinguished the procedure of reason in mathematics from its procedure
in philosophy. In the more general meaning, all presentation of a concept through the
(spontaneous) production of an intuition corresponding to it can be called construction.
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Geometry, Construction, and Intuition in Kant and His Successors 195

If this takes place through the mere imagination in accordance with an a priori concept,
it is called pure construction (which the mathematician must lay at the basis of all his
demonstrations...). If, however, it is exerted on any kind of matter, it could be called
empirical construction. The former can also be called schematic, the latter technical.
The latter type of construction, which is actually only improperly so-called (because
it belongs not to science but to art and is achieved with instruments), is now either
geometrical construction by means of compass and ruler or mechanical construction,
for which other instruments are necessary - as, for example, the delineation [Zeichnung]
of the remaining conic sections besides the circle. (Ak. 8, pp. 191-2)

In particular, then, Kant himself is perfectly aware that the general conic section
is not constructible with straight edge and compass.

In this same passage, however, Kant classifies ruler and compass construc-
tions as "empirical" or "technical" as well. Does this mean that even the
constructions of elementary Euclidean geometry are also mathematically ir-
relevant? That this is emphatically not the case is clear from a footnote to §1
of the First Introduction to the Critique of Judgement (which is thus written
shortly before the reply to Eberhard):

*This pure and for precisely this reason noble science [i.e., geometry] seems to com-
promise its dignity when it admits that, as elementary geometry, it uses instruments,
although only two, for the construction of its concepts - namely the compass and the
ruler, which constructions alone it calls geometrical, while those of higher geometry, by
contrast, it calls mechanical since for the construction of the concepts of the latter more
composite [zusammengesetztere] machines are required. But one also understands by
the former, not the actual instruments (circinus et regula), which could never give these
figures with mathematical precision; rather, they should mean only the simplest modes
of presentation of the a priori imagination, which no instrument can imitate. (Ak. 20, p.
198)

And it is clear from this passage, together with the passage on the transcendental
synthesis of the imagination at B154-5 and the passage from the reply to Kastner
at Ak. 20, pp. 410-11 cited earlier, that the "simplest modes of presentation
of the a priori imagination" in question are just the two activities (in thought)
of drawing [ziehen] a straight line and describing a circle (by rotating a line
segment about a fixed point in a plane). Construction of straight lines and
circles, when performed via figurative synthesis in the a priori imagination rather
than with real draftsman's instruments on real pieces of paper, thus continues
to be paradigmatic of "properly so-called" pure or schematic mathematical
construction.

There are therefore two different distinctions at play here. The first is a
distinction, within mathematics, between those curves or figures constructible
via straight lines and circles and more complex figures such as the conic sec-
tions. The former are constructible by straight edge and compass in the idealized
mathematical sense, and this question is entirely independent of the capabilities

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online by IP 171.67.216.23 on Tue Nov 10 12:22:54 GMT 2015.

http://dx.doi.org/10.1017/CBO9780511570681.010
Cambridge Books Online © Cambridge University Press, 2015



196 MICHAEL FRIEDMAN

of any actual draftsman's instruments. The second distinction, by contrast, is
between pure mathematical construction, whether belonging to "elementary"
or to "higher" geometry, and actual empirical delineation. In this sense, even
constructions with straight edge and compass, when it is a matter of actual
draftsman's instruments rather than idealized mathematical operations, lie out-
side the concerns of the geometer. Kant's dichotomy between schematic and
technical construction precisely corresponds to the second distinction, but his
use of "mechanical construction" tends to blur the two. In the passage from
the reply to Kastner at Ak. 20, pp. 410-11, for example, a priori mathematical
"description" is opposed to "mechanical delineation," and a few lines later in
the above reply to Eberhard Kant sets up an opposition between "pure, merely
schematic construction" and "mechanical [construction]" (Ak. 8,192). This lat-
ter usage of "mechanical" thus corresponds to "empirical" or "technical" and
does not involve the contrast between ruler and compass and more complicated
forms of construction.18

Lying behind this ambiguity is an important issue of principle concerning the
precise scope of admissible geometrical or mathematical operations - an issue
made particularly acute by the investigation of a large variety of new curves
in the seventeenth and eighteenth centuries. The locus classicus for this issue
is Descartes's Geometrie, which, as is well known, develops a novel version
of the distinction between "geometrical" and "mechanical" curves. The former
include all algebraic curves - not only lines, circles, and the conic sections but
also curves defined by algebraic equations of third and higher degree - whereas
the latter comprise the nonalgebraic or transcendental curves. Moreover, the
algebraic curves, according to Descartes, are all constructible by appropriate
generalizations of the straight edge and compass, by idealized instruments that
arise by iteration, as it were, of the most elementary ones. We can construct
lines and circles and then rotate and translate them to produce new curves
(like the conic sections); we can then rotate and translate these new curves
to produce further curves (like the so-called Cartesian parabola, which is of
the third degree); and so on. Transcendental curves, by contrast, do not find
a place in this iterative hierarchy of possible constructions. They may exist
"mechanically" in actually given empirical nature, but they forever exceed our
precise mathematical grasp - our capacity clearly and distinctly to proceed
step-by-step via intuitively evident rules.19

Unfortunately, there is not enough evidence to determine where Kant himself
stands on this issue. He never, to my knowledge, considers curves more complex
than the conic sections, and here his viewpoint appears to be entirely traditional.
Conic sections are intuitively presentable through the ancient "solid" construc-
tions on a cone, which itself arises through the rotation of a line with a fixed
point in space. For Kant, as we have seen, what is primary are the basic oper-
ations - the "simplest modes of presentation of the a priori imagination" - by

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online by IP 171.67.216.23 on Tue Nov 10 12:22:54 GMT 2015.

http://dx.doi.org/10.1017/CBO9780511570681.010
Cambridge Books Online © Cambridge University Press, 2015



Geometry, Construction, and Intuition in Kant and His Successors 197

which the subject can execute translations of and rotations around a given point
of view in space, and he appears to hold that only constructions that can arise
thereby are geometrically and mathematically admissible. Yet some delimi-
tation of what "can arise thereby" actually means is necessary if a notion of
admissible construction is to be at all well defined, and Kant unfortunately says
nothing to suggest such a delimitation. If arbitrary combinations of translations
and rotations are allowed, we can clearly construct any continuous curve, and
then there is no reason, in particular, to dismiss "mechanical" constructions of
the conic sections as mathematically irrelevant.20 So what is needed, then, is
some iterative extension of a set of basic operations analogous to Descartes's.
From a fundamental logical and mathematical point of view, however, the issue
proves to be a deep one indeed. For it eventually leads, via the need to assim-
ilate transcendental as well as algebraic curves, to the free use of infinitesimal
methods and thus, in the end, to the realization that a radically new type of
iteration essentially involving limit operations is required.

In any case, the relationship that Kant does set up between geometrical con-
struction, on the one hand, and motion in space (i.e., translations and rotations),
on the other, raises significant questions about his own doctrine of sensibility.
In particular, if, as we argued above, the two key features of intuitive space -
its unity and infinity - depend on the possible motions of the subject's point
of view, then these features appear to depend on the unity and identity of the
subject - and thus, in the end, on the transcendental unity of apperception -
rather than on independently given features of space as a form of sensibility.
Space is unitary because every possible object therein must be reachable from a
given initial point of view by an appropriate combination of translations and ro-
tations; and space is infinite or unbounded because any initial perceptible region
is thereby extendible without limit to any other perceptible region. These two
key features of intuitive space therefore directly depend on the requirement that
every spatial region be accessible via continuous motion by a single perceiving
subject, and without this requirement there would simply be no guarantee what-
ever that all possible spatial regions belong to a single, unitary and unbounded,
comprehensive system of such regions.21

This dependence of key features of sensibility on the transcendental unity of
apperception, and thus on the understanding, is closely related, in turn, to the
well-known distinction that Kant makes between space as "form of intuition"
and as "formal intuition" in §26 of the second edition Transcendental De-
duction:

* Space represented as object (as is actually required in geometry) contains more than
the mere form of intuition - namely, [it contains] uniting [Zusammenfassung] of the
manifold in accordance with the given form of sensibility in an intuitive representation,
so that the form of intuition gives [a] mere manifold but the formal intuition gives unity
of representation. In the Aesthetic I counted this unity [as belonging] to sensibility, only
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in order to remark that it precedes all concepts, although it in fact presupposes a synthesis
that does not belong to the senses but through which all concepts of space and time first
become possible. For, since through it (in that the understanding determines sensibility)
space or time are first given, the unity of this a priori intuition belongs to space and time,
and not to the concept of the understanding (§24). (B160-1)

The reference to geometry and to §24 implies, I believe, the conception of
motion in space that was first suggested above by the passage at B154-5. And
that geometrical motion in this sense is a direct expression of the transcendental
unity of apperception is explicitly stated in §17:

Therefore, the first pure cognition of the understanding, on which its entire remaining use
is grounded, and which is also, at the same time, entirely independent of all conditions of
sensible intuition, is the principle of the original synthetic unity of apperception. Thus,
the mere form of outer sensible intuition, space, is not yet any cognition at all; it gives
only the manifold of a priori intuition for a possible cognition. But to cognize anything in
space, for example, a line, I must draw [ziehen] it and therefore bring about synthetically
a determinate combination of the given manifold - so that the unity of this action is, at
the same time, the unity of consciousness (in the concept of a line), and thereby alone
is an object (a determinate space) first cognized. (B137-8)

The unity of the intuitive representation in question therefore depends directly
on the unity of consciousness and thus, in the end, on a conceptual unity.

Why, then, does Kant also assert, in the last sentence of the footnote at B160-
1, that "the unity of this a priori intuition belongs to space and time, and not
to the concept of the understanding"? The point, I think, is that the relation-
ship between the understanding and sensibility effected by the transcendental
synthesis of the imagination is a reciprocal one. To be sure, space would not
be unitary in the relevant sense without the "action of the understanding on
sensibility" (B152) manifested in figurative synthesis. Nevertheless, the unity
thereby produced is not itself a conceptual unity, whereby a number of repre-
sentations (subordinate concepts) are contained under a given representation
(superordinate concept); it is, rather, a distinctly intuitive unity, whereby a num-
ber of representations (spatial regions) are contained in a given representation
(that of a single space) (see B39-40 and compare B133 n). All spatial regions
belong to a single space in that they all must be reachable from here, as it
were, but reachable-from-here is not a conceptual relation. By the same token,
although the transcendental synthesis of the imagination is a realization or em-
bodiment of the "pure intellectual synthesis" contained in the synthetic unity
of apperception (B150-2), it must also go beyond pure intellectual synthesis
since the latter in fact requires pure sensibility if it is to succeed in unifying a
given manifold (B153-4). There would thus be no unity in the relevant sense
without the mutual cooperation of understanding and sensibility, without that
interaction between the two faculties "through which the categories, as mere
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forms of thought, then acquire objective reality, that is, application to objects
that can be given to us in intuition" (B150-1).

Even in pure mathematical synthesis in the pure imagination, therefore, the
categories are necessary to bring unity into the intuitive manifold - a point Kant
makes explicitly in §20 of the Prolegomena:

Even the judgements of pure mathematics in its simplest axioms are not exempt from
this requirement [i.e., subsumption under a pure concept of the understanding]. The
principle that the straight line is the shortest between two points presupposes that the
line is subsumed under the concept of magnitude, which is certainly no mere intuition
but has its seat solely in the understanding and serves to determine the intuition (the
line) with respect to the judgements that may be made of it in relation to their quantity,
namely [in relation to] plurality ... (Ak. 4, pp. 301-2)

And in the Table of Pure Concepts of the Understanding following in §21,
Kant lists the categories of quantity in the form: "unity (the measure), plurality
(the magnitude), totality (the whole)" (p. 303). So, it is clear, then, that the cat-
egories involved in pure mathematical synthesis, and thus in the mathematical
unity of space as an object of geometry, are the categories of quantity.22

In the terminology of the important footnote added at B 201, we are there-
fore involved with a mathematical synthesis of "composition (composition
rather than a dynamical synthesis of "connection (nexus)." We are involved
with the mathematical categories (here the categories of quantity) rather than
the dynamical categories of relation and modality - where the former ground
the possibility of the principles of mathematics, whereas the latter ground the
possibility of "general (physical) dynamics" (A162/B202). And this distinction
has fundamental implications for the nature and status of the pure geometrical
motion (viz., translation and rotation), which, according to our interpretation,
first embodies mathematical synthesis. In particular, since the dynamical cat-
egories and thus "general (physical) dynamics" are not yet at issue, we are
not concerned here with the questions about distinguishing true from apparent
motion and establishing a privileged frame of reference arising in the context
of Newtonian dynamics.23 The motion with which we are concerned here is
purely relative or, perhaps better, purely mathematical, in that we abstract from
all questions of speed, acceleration, duration, and so on, and attend only to its
character as a continuous transformation.24

Il l

The above interpretation of Kantian spatial intuition attempts to build a bridge
between the phenomenological and logical approaches by viewing the relevant
formal structure of intuitive or perceptual space as fundamentally kinematical: it
is a matter of the possible translational and rotational motions (in modern terms,
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the group of rigid motions) by which the perceiving subject can move in and
through space so as to put itself in potential perceptual contact with all possible
spatial objects. This structure then grounds the formal procedure of geometrical
construction underlying pure mathematical geometry by generating the two
basic operations of drawing straight lines and describing circles (in modern
terms, as orbits of the group of motions). From this point of view, therefore,
Kant's own conception of spatial intuition is not so far from that developed
in the nineteenth century by Hermann von Helmholtz. Indeed, it is of course
Helmholtz who first explicitly articulates a program for founding geometry on
the formal structure of perceptual space based, via the condition he calls free
mobility, on the group of rigid motions.25 Nevertheless, it is well known that
Helmholtz presents his position as anti-Kantian, and this in two central respects.

The first and most obvious respect in which Helmholtz presents his concep-
tion as anti-Kantian is that Helmholtz explicitly attacks the idea that the specific
structure of Euclidean space is grounded in our spatial intuition or is in any way
a priori. From Riemann's work and his own mathematical investigation of the
"space-problem"26 Helmholtz has learned that the relevant formal structure of
possible motions in and through perceptual space (the structure characterized
by the condition of free mobility) does not yield specifically Euclidean space,
but rather the three classical cases of spaces of constant curvature: Euclidean
space, spherical or elliptic space, and hyperbolic space. By imagining a mobile
perceiver located in one or another of the non-Euclidean spaces of constant
curvature, we can then make it perfectly evident that the formal structure of
spatial intuition alone (i.e., the possibility of free mobility) does not uniquely
single out the Euclidean case:

This will suffice to show how one can, in the way suggested, derive from the known
laws of our sensible perceptions the series of sensible impressions that a spherical or
pseudo-spherical world would give us if such a world existed. We thereby never come
upon an inconsistency or impossibility, any more than in the calculative treatment of
metrical relationships. We can picture to ourselves the appearance of a pseudo-spherical
world outwards in all directions, just as well as we can develop the concept of such
a world. We therefore cannot grant that the axioms of our geometry [i.e., Euclidean
geometry] are grounded in the given form of our faculty of intuition or are somehow
implicated in such a form.27

And it is in this sense, therefore, that Helmholtz defends an empiricist concep-
tion of geometry. The axioms of specifically Euclidean geometry are neither
necessities of thought (because we can consistently develop the more general
concept of Riemannian metrical manifold) nor necessities of intuition (because
the formal structure of spatial perception leaves all three classical cases of con-
stant curvature still open). Specifically Euclidean geometry thus can be obtained
only from the observed facts governing the behavior of mobile rigid bodies in
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the actual world. (Helmholtz himself has no reason to doubt, of course, that the
observed facts do indeed support specifically Euclidean geometry.)

This does not mean, however, that the Kantian idea of spatial intuition and its
a priori structure are wholly erroneous. On the contrary, Helmholtz's famous
assertion that "space can be transcendental without the axioms being so" is
intended precisely to underscore the fundamental truth that he finds in the
Kantian doctrine:

Kant's doctrine of the a priori given forms of intuition is a very happy and clear expression
of the situation. Yet this form must be contentless and free enough in order to take up
every content that can ever enter into the form of perception in question. But the axioms
of geometry [i.e., Euclidean geometry] limit the form of intuition of space so that every
thinkable content can no longer be taken up therein, if geometry is to be at all applicable
to the actual world. However, if we leave these axioms aside, then the doctrine that the
form of intuition of space is transcendental is free from any stumbling block. Here Kant
was not critical enough in his critique. Certainly, however, we are here concerned with
propositions of mathematics, and this piece of the critical work must be taken care of
by the mathematician.28

Since our spatial intuition in fact has an a priori formal structure expressed
mathematically in the condition of free mobility, Kant's doctrine is, so far,
unobjectionable. Only the later mathematical discovery of the classical non-
Euclidean geometries and the fact that precisely the three classical cases are
given by the condition of free mobility allow us to correct the one flaw in Kant's
original doctrine (which discoveries, we might add, Kant could in no way have
been expected to anticipate).29

The second, and, in the present context, perhaps even more interesting respect
in which Helmholtz presents his conception as anti-Kantian concerns the idea
of spatial intuition itself. For Helmholtz presents his kinematical picture of
spatial intuition expressed in the condition of free mobility - the picture of
spatial intuition as involving the formal structure of the possible changes in
point of view and orientation of the perceiving subject - as explicitly opposed
to the "popular" or "older" concept of intuition (which he sometimes attributes
to Kant himself, but sometimes only to the "Kantians of strict observance")
according to which spatial intuition is a simple and unanalyzable momentary
psychological act providing us with direct "evidence in a flash [blitzdhnliche
EvidenzV And it is only by invoking what he takes to be his new, kinematical
picture of spatial intuition that Helmholtz is then able to argue against the
claims of contemporary Kantians that, although non-Euclidean geometries may
be mathematically thinkable, they are not spatially intuitable and therefore are
not possible candidates for describing the structure of our spatial intuition.30

If the above interpretation of Kant's own doctrine of spatial intuition is at all
correct, however, it turns out that at least the germ of Helmholtz's kinematical
conception is already present in Kant himself. In this sense, Kant's explanation
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of the a priori status of Euclidean geometry in terms of the necessary structure
of our pure form of spatial intuition contains the seeds of its own destruction.

Here, however, it is imperative to note a third respect in which Helmholtz's
conception is very definitely anti-Kantian - a central difference between the
two conceptions of spatial intuition that Helmholtz, because of his naturalistic
transformation of the meanings of "a priori" and "transcendental," does not
himself emphasize at all. For what Helmholtz considers as belonging to the a
priori or transcendental structure of spatial intuition involves, from a Kantian
perspective, empirical rather than pure intuition. Helmholtz constructs the rele-
vant group of rigid motions expressing the free mobility of the perceiver in and
through perceptual space from the muscular and kinesthetic sensations of the
subject as it voluntarily initiates such motions, which motions are essentially
considered, therefore, as movements of the subject's body. The sense in which
the structure of these bodily sensations constitutes an a priori or transcendental
form of intuition, then, is simply that this structure belongs on the side of the
subject and does not simply picture or mirror an external realm of "things in
themselves."31 For Kant, by contrast, the relevant group-theoretical structure
involves only the motions of a disembodied point of view and has nothing to
do, therefore, with any bodily sensations. Kant is concerned only with that "ac-
tion of the understanding on sensibility" (B152) whereby the (transcendental)
subject locates itself in space at a definite point of view and with a definite
orientation.32 Indeed, Kantian pure, as opposed to empirical, intuition can, of
course, involve no sensations or actual perceptions at all.33 Kant's doctrine of
space as a pure form of outer intuition is in this sense entirely unique, and it can-
not be satisfactorily understood, I believe, except by invoking the basic ideas of
the logical interpretation of this doctrine. It is only because there is no room in
Kant's own conception of logical, conceptual, or analytic thought for anything
corresponding to pure mathematical geometry that there is a place, accordingly,
for a wholly nonconceptual faculty of pure spatial intuition. For Helmholtz, by
contrast, there is no difficulty at all in formulating pure mathematical geometry
conceptually or analytically with no reference to spatial intuition whatsoever
(via the Riemannian conception of metrical manifold), and an appeal to spatial
intuition or perception is only then necessary to explain the psychological origin
and empirical application of the pure mathematical concept of space.34

This necessary separation, in Helmholtz's conception, of the pure mathe-
matical concept of space from perceptual or intuitive space implies, moreover,
that there is a fundamental gap between the precision and exactitude of the
mathematical concept and the rough and approximate character of the relevant
perceptual or intuitive experience. And it is precisely by emphasizing and ex-
ploiting this gap that Henri Poincare develops his contrasting conventionalist
interpretation of geometry. For Poincare entirely agrees with Helmholtz that
the psychological origin and empirical application of mathematical geometry
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is to be explained by the structure of the group of rigid motions of the perceiver
in perceptual space expressed in the condition of free mobility. Poincare also
entirely agrees that the structure of this group (i.e., the structure of perceptual
space) is based on our motor or kinesthetic bodily sensations as we voluntarily
move or displace our body in and through perceptual space. Accordingly, that
aspect of perceptual space most relevant to geometry, for Poincare, is what he
calls motor space - the space generated by the group of bodily displacements.
Finally, Poincare also entirely agrees with Helmholtz that, precisely because the
condition of free mobility leaves all three classical cases of geometries of con-
stant curvature still open, specifically Euclidean geometry is neither a necessity
of thought nor an a priori product of our form of spatial intuition. For Poincare,
however, an empirical explanation of the origin of Euclidean geometry is not
the only remaining alternative. On the contrary, precisely because the exact
mathematical concept of continuous group can only be an idealization of our
rough and approximate experience of bodily displacements, the group we end
up with must inevitably reflect our own free choice, which choice is guided but
not constrained by the rough and approximate experience with which we begin.

For Poincare, therefore, our choice of specifically Euclidean geometry (which
he, like Helmholtz, has no reason to question) is based primarily on its mathe-
matical simplicity: on the circumstance, namely, that only the Euclidean group
of motions contains a normal subgroup of translations:

Geometry is not an experimental science; experience forms merely the occasion for
our reflecting upon the geometrical ideas which pre-exist in us. But the occasion is
necessary; if it did not exist we should not reflect; and if our experiences were different,
doubtless our reflections would be different. Space is not a form of our sensibility; it is an
instrument which serves us not to represent things to ourselves, but to reason upon things.

What we call geometry is nothing but the study of formal properties of a certain
continuous group; so that we may say, space is a group. The notion of this continuous
group exists in our mind prior to all experience; but the assertion is no less true of
the notion of many other continuous groups; for example, that which corresponds to
the geometry of Lobachevsky. There are, accordingly, several geometries possible, and
it remains to be seen how a choice is made between them. Among the continuous
mathematical groups which our mind can construct, we choose that which deviates
least from that rough group, analogous to the physical continuum, which experience has
brought to our knowledge as the group of displacements.

Our choice is therefore not imposed by experience. It is simply guided by experience.
But it remains free; we choose this geometry rather than that geometry, not because it
is more true, but because it is more convenient.

. . . We choose the geometry of Euclid because it is the simplest.... [I]t is simpler
because certain of its displacements are interchangeable with one another, which is not
true of the corresponding displacements of the group of Lobachevsky.35

Poincare's conventionalism is thus based, in the end, on the traditional Platonic
gap between pure mathematical ideas and the rough perceptual experience
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from which they arise and to which they are to be applied. More precisely,
when one combines this traditional gap with the Helmholtz-Lie solution to
the "space-problem," one sees that there are three and only three mathematical
counterparts to our intuitive experience of perceptual space - among which,
therefore, a conventional choice must be made. By contrast, as we saw earlier,
the entire point of Kant's own doctrine of pure spatial intuition is precisely to
overcome this traditional Platonic gap - the gap, in Kantian terms, between
reason and the understanding on one side and sensibility on the other. Indeed,
as we argued at the end of §11, Kant's doctrine of the transcendental synthesis of
the imagination is intended precisely to unite the understanding and sensibility
once and for all, so that, in particular, "pure mathematics, in its full precision,
[is made] applicable to objects of experience" (A165/B206, my emphasis).

Nevertheless, although Poincare's conception of the role of spatial intuition
in geometry is, in this respect, quite antithetical to the Kantian doctrine of pure
spatial intuition, Poincare's conception of the role of intuition in arithmetic is
closely analogous to Kant's. As is well known, Poincare vehemently opposes
the logicist doctrine that arithmetic is a part of logic and hence a product, in
Kantian terms, of the pure understanding. He holds instead that arithmetic is
based on an irreducible intuition of succession or indefinite iteration, by which
the mind is immediately aware of its own capacity indefinitely to repeat any
given operation. It is this immediate awareness that grounds both the potential
infinity of the number series and the characteristically mathematical form of
reasoning expressed in mathematical induction. And this awareness is intuitive
rather than conceptual precisely because neither fundamental property of our
arithmetical thought is reducible, for Poincare, to purely logical thinking -
even if we widen our conception thereof to include the new mathematical logic.
In this sense, Poincare's defense of the idea that arithmetic is synthetic a priori
is indeed genuinely Kantian, and Poincare's conception of what we might call
pure arithmetical intuition is in fact closely analogous to Kantian pure intuition.
The one difference is that Poincare's arithmetical intuition is not so directly and
explicitly tied to sensibility, to the idea of time as the form of inner sense.36

What is perhaps not so well known is that Poincare also emphasizes the im-
portance of arithmetical intuition (the intuition of succession or indefinite iter-
ation) in geometrical reasoning. As we have seen, Poincare holds that the object
of geometry is a group of rigid motions and thus, in accordance with the
Helmholtz-Lie theorem, that space, although not necessarily Euclidean, must
nonetheless have constant curvature. And it is precisely in this context that he
appeals to arithmetical intuition:

[S]pace is homogeneous and isotropic. It may also be said that a movement which has
once been produced may be repeated a second and a third time, and so on, without its
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properties varying. In the first chapter, where we discussed the nature of mathematical
reasoning, we saw the importance which must be attributed to the possibility of repeating
indefinitely the same operation. It is from this repetition that mathematical reasoning
gets its power; it is, therefore, thanks to the law of homogeneity, that it has a hold on the
geometric facts.37

This passage seems to be closely connected, in turn, with the circumstance
that Poincare, again in accordance with the Helmholtz-Lie theorem, explicitly
excludes from consideration the more general theory of Riemannian manifolds
including spaces of variable curvature:

If therefore the possibility of motion is admitted, there can be invented only a finite
(and even a rather small) number of three-dimensional geometries. Yet this result seems
contradicted by Riemann, for this savant constructs an infinity of different geometries,
and that to which his name is ordinarily given is only a particular case. All depends,
he says, on how the length of a curve is defined. Now, there is an infinity of ways of
defining this length, and each of them may be the starting point of a new geometry.

That is perfectly true, but most of these definitions are incompatible with the motion
of a rigid figure, which in the theorem of Lie is supposed possible. These geome-
tries of Riemann, in many ways so interesting, could never therefore be other than
purely analytic and would not lend themselves to demonstrations analogous to those of
Euclid.38

Thus Poincare appears to be perfectly clear (unlike Helmholtz, for example)
that Riemann has indeed shown how to introduce the notion of distance or
measurability into a manifold without relying on the motion of rigid bodies
and hence on free mobility. Poincare's claim is rather that nonhomogenous
manifolds of variable curvature are not susceptible to Euclidean-style systems
of demonstration, so that, therefore, they are not in the same sense synthetic.39

Now it is by no means clear precisely what Poincare means by this assertion.
Nevertheless, the way in which he juxtaposes geometrical and arithmetical
intuition here may suggest a connection between the group of motions in a space
of constant curvature and an iterative procedure of geometrical construction, a
connection that would generalize what we argued earlier in the case of Kant's
theory of geometrical construction and, specifically, Euclidean geometry.40 In
that case we argued that the Euclidean group of motions (the group of Euclidean
translations and rotations) constitutes the basis, for Kant, of the procedure of
construction with straight edge and compass underlying the proof structure of
the Elements. This procedure iteratively generates the domain of Euclidean
geometry so that, in particular, we are concerned here only with constructive
existence claims and the potential infinite. We are concerned, that is, with a
domain precisely analogous, in this respect, to the natural numbers. Moreover,
as is well known, this feature of the domain of elementary Euclidean geometry
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can be expressed analytically by the circumstance that a Cartesian space over
the entire field of real numbers is by no means necessary for representing the
existence claims implicit in Euclid's postulates. On the contrary, the domain of
elementary Euclidean geometry is represented precisely by a Cartesian space
over the much smaller Euclidean subfield of the reals, which results by closing
the rationals under the operation of extracting real square roots. (And it is
this representation, of course, that we use to prove the impossibility within
elementary Euclidean geometry of various "higher" constructions such as the
trisection of an angle.)

It is interesting, then, that something closely analogous is true in all three clas-
sical cases of spaces of constant curvature. In all three cases, one can formulate
an elementary geometry where, in place of the Dedekind continuity axiom, one
simply has an axiom of intersection for straight lines and circles. The domains
of these elementary geometries therefore consist of precisely those points gen-
erated by straight-edge and compass constructions in the sense of each of the
geometries in question, and each of these domains is analytically representable
by an appropriate space over a Euclidean subfield of the reals - the familiar
Cartesian space in the case of Euclidean geometry, certain Klein spaces in the
cases of hyperbolic and elliptic geometry. Moreover, in this more general ana-
lytic treatment, all three cases are viewed in accordance with the Cayley-Klein
program as embedded within projective geometry (in the elliptic case, the em-
bedding is trivial), so that, in particular, the three different groups of motions
appear as subgroups of the projective group. The analytic representations in
question are then induced by corresponding analytic representations of projec-
tive geometry. In this sense, there does indeed seem to be a general connection
between groups of rigid motions and geometrical construction subsisting in all
three classical cases of constant curvature.

The most interesting case of this situation occurs in hyperbolic or Bolyai-
Lobachevsky geometry, a central feature of which is the existence of limiting
or asymptotic parallel lines.41 It is not only the case that, given a line / and a
point P not on /, there are an infinity of lines through P that do not intersect
/ (and are in this sense parallel to /), but among all such nonintersecting lines,
there are exactly two distinguished ones, the limiting or asymptotic parallels to
/ through P, that precisely divide the set of all lines through P into two classes -
those that lie within the angle determined by the two asymptotic parallels on
the same side as / (i.e., within the region 1Z in Figure 1) and intersect /, and
those that do not lie within this angle and do not intersect /.

The pair of asymptotic parallel lines through P therefore determines a Dede-
kind cut in the set of all lines through P (more precisely, in the set of all rays
or half-lines originating at P) with respect to the property of intersecting line
/, and, accordingly, the existence of such lines is traditionally justified by a
Dedekind continuity axiom. It was Hilbert in 1903 who showed that one could,
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1

Figure 1

instead, simply add an axiom asserting the existence of asymptotic parallels
to his axioms of incidence, order, and congruence characterizing absolute ge-
ometry, and one thereby obtains all the usual theorems of hyperbolic geometry
without needing to invoke full Dedekind continuity.42 The key part of Hilbert's
approach is the construction of a field based on equivalence classes of asymp-
totic parallels (the so-called end calculus), which then can be used to coor-
dinatize the set of points so as, in effect, to embed the geometry in question
within projective geometry. From this embedding within projective geometry,
the usual formulas of hyperbolic geometry then follow. It turns out that the
field thus constructed by Hilbert is precisely a Euclidean field. In particular, the
axiom of intersection for lines and circles is a consequence of Hilbert's axiom
of asymptotic parallels.

It is natural to ask whether the converse also holds. That is, given Hilbert's
axioms of incidence, order, and congruence characterizing absolute geometry,
the negation of the Euclidean parallel postulate, and the axiom of intersection
for lines and circles, can we then derive the existence of asymptotic paral-
lels? If so, we would, in effect, have constructed the asymptotic parallels with
straight edge and compass within hyperbolic geometry. And it is in fact the
case that Bolyai himself gave a construction with straight edge and compass of
the asymptotic parallels already in 183243 (where, in Figure 2, PX and PY are
congruent to QR).

It turns out, however, that to complete the derivation in question, one also
needs to invoke the Archimedean axiom. This follows from work of Hessenberg,
Hjelmslev, and Bachmann, which yields an embedding of any geometry satis-
fying the axioms of absolute geometry into projective geometry so as thereby
to construct a canonical coordinatization by a field K. Moreover, the axiom of
intersection for lines and circles holds if and only if K is Euclidean. But, if the
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Figure 2

negation of the Euclidean parallel postulate holds and K is non-Archimedean,
then Bolyai's construction yields lines through a point P having a "common
perpendicular at infinity" with the given line /, which lines, however, are not
necessarily asymptotically parallel to /. Each such line through P meets / in
an ideal point at infinity, but the ideal points at infinity do not necessarily have
a minimum or limiting value. If K is Archimedean, by contrast, then Bolyai's
construction does yield asymptotic parallels, and, in fact, the resulting geometry
must be isomorphic to the usual Klein model for hyperbolic geometry over an
Archimedean Euclidean field (where, in Figure 3, the points in our model are all
interior to the bounding circle of ideal points, the polar constructions outside the
bounding circle depict the perpendicularity relations of Figure 2, and the interior
circle with center P and radius equal to QR appears as a conic). (Without the
Archimedean axiom, by contrast, we can construct models in which the interior
points are all infinitesimal, the bounding "circle" of ideal points consists of all
finite points, and the ultra-ideal points outside the bounding circle are infinite;
Bolyai's construction then yields ideal points on the bounding circle, but there is
no limiting or minimum value.) In this sense, by taking the Archimedean axiom
as an additional constructive constraint, we can give a constructive treatment
of Bolyai-Lobachevsky geometry analogous to Euclidean geometry.

As noted earlier, an analogous treatment can be given of elliptic geometry,
although here, we of course need to generalize the axioms of absolute geometry
as well. In all three classical cases of constant curvature, the connection we
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Figure 3

have attributed to Kant between space as a form of intuition or outer perception
given by a group of motions and space as an object of geometrical construction
therefore appears to hold.44 Yet it is also interesting to note, finally, that if
we do not insist on such a connection with geometrical construction, it is still
possible to envision a "phenomenological" foundation, based on a consideration
of the possible motions of the perceiving subject in and through perceptual
space, of the more general class of Riemannian manifolds, including spaces
of variable curvature. This, in fact, was precisely the philosophical motivation
behind Hermann Weyl's generalization of the Helmholtz-Lie solution to the
"space-problem." Weyl developed his analysis in the context of Husserlian
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phenomenology and, in particular, as a correction to Oskar Becker's (Husserl's
student) phenomenological justification of specifically Euclidean geometry.45

Becker began by considering the phenomenological subject as embedded in
space at a point of view with respect to which it can change both its orientation
and its position. By imposing a condition of free mobility on such possible
changes, we then derive the constant curvature of the given space, and by
further requiring that the translations constitute a normal subgroup, we arrive at
specifically Euclidean geometry. For Weyl, by contrast, we do not assume that
Helmholtzian free mobility is possible and thus that the perceptual space of the
phenomenological subject must have constant curvature. Instead, Weyl begins
with the idea of an infinitesimal rotation group at every point and then fixes the
associated metric as Pythagorean or infinitesimally Euclidean by requiring that
an affine connection - and thus the idea of infinitesimal translation from the
initial phenomenological point of view - be thereby determined uniquely:

A way for understanding the Pythagorean nature of the metric expressed in the Euclidean
rotation group precisely on the basis of the separation of a priori and a posteriori has
been given by the author: Only in the case of this group does the intrinsically acciden-
tal quantitative distribution of the metric field uniquely determine in all circumstances
(however it may have been formed in the context of its a priori fixed nature) the in-
finitesimal parallel displacement: the non-rotational progression from a point into the
world. This assertion involves a deep mathematical theorem of group theory which I
have proved. I believe that this solution of the space-problem plays the same role in
the context of the Riemann-Einstein theory that the Helmholtz-Lie solution (section
14) plays for rigid Euclidean space. Perhaps the postulate of the unique determina-
tion of "straight-progression" can be also justified from the requirements of the phe-
nomenological constitution of space; Becker would still like to ground the significance
of the Euclidean rotation group for intuitive space on Helmholtz's postulate of free
mobility.46

Although Weyl's group-theoretical solution to the generalized "space-prob-
lem" of course retains its mathematical interest entirely independently of this
connection with Husserlian phenomenology, the philosophical motivations be-
hind Weyl's approach attest, nevertheless, to the enduring fascination of the
idea that geometry is to be based on a consideration of space as a (kinematical)
form of intuition.47

In Weyl's work, therefore, the program, begun by Kant, of considering the
geometry of space as given in our form of outer intuition has in a sense
come full circle. In Kant, as we have seen, this program has both a log-
ical or constructive and a phenomenological or perceptual dimension. The
logical or constructive side of Kant's conception is grounded in the proof
procedure of Euclid's Elements, where we iteratively generate the objects of
geometry by a definite procedure of construction, so that the objects in question
constitute a potentially infinite totality. The phenomenological or perceptual
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side of Kant's conception is expressed by the "action of the understanding on
sensibility" (B152), whereby the subject imaginatively locates itself in space at
a definite point of view and with a definite orientation, so that, by virtue of the
resulting formal structure of pure outer intuition, the space in which we perceive
outer objects is necessarily both singular or unitary and infinite or unbounded.
In Euclidean geometry, moreover, we find mathematical counterparts to both
sides of Kant's conception, in that the translations and rotations at the basis of
the Euclidean group of rigid motions generate the two fundamental elements of
Euclidean construction - straight lines and circles - as their orbits. In the nine-
teenth century, Kant's conception is both generalized and radically transformed
in the work of Helmholtz and Poincare, where a group-theoretical and per-
ceptual/kinematical interpretation of the foundations of geometry is extended
also to the classical non-Euclidean geometries of constant curvature. Since,
however, this nineteenth-century generalization now has an entirely conceptual
model of geometry given by Riemann's theory of manifolds, spatial perception
as it figures in the foundational conceptions of Helmholtz and Poincare is now,
in Kantian terminology, empirical as opposed to pure intuition. Nevertheless, it
is still possible, from a mathematical point of view, to connect this generalized
group-theoretical conception of geometry with an appropriate generalization
of Euclidean construction. In the case of the variably curved Riemannian man-
ifolds employed in the general theory of relativity, by contrast, the approach
taken by Helmholtz and Poincare must itself be radically transformed. And the
import of Weyl's reaction to this situation, from the present point of view, is
that a group-theoretical and perceptual/kinematical interpretation of the foun-
dations of geometry can, in a new sense, be sustained, whereas, at the same
time, the connection with a definite procedure of construction is abandoned.
In Weyl's work, we might say that we find a definitive divorce between the
logical or constructive and the phenomenological or perceptual dimensions of
Kant's original doctrine.

NOTES

Earlier versions of this paper were presented at a Workshop on Modern Mathemati-
cal Thought, University of Pittsburgh-Carnegie Mellon University; at the University
of Western Ontario; at a History of the Philosophy of Science (HOPOS) Workshop;
at a conference in Honor of William Tait at the University of Chicago; and at a Kant
Conference at the University of St. Andrews. I am indebted for comments and dis-
cussion to John Bell, Henk Bos, Graciela De Pierris, Michael Dickson, George Gale,
Robert Hanna, Ulrich Majer, Kenneth Manders, Onora O'Neill, Charles Parsons, Alan
Richardson, Simon Saunders, Howard Stein, Mark Wilson, and Allen Wood. I am espe-
cially indebted to Robert DiSalle, without whom this paper would not have been written
(see note 25).

1. M. Friedman, "Kant's Theory of Geometry," Philosophical Review, 94 (1985):
455-506, reprinted, with revisions, as Chapter 1 of Kant and the Exact Sciences
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(Cambridge, MA: Harvard U. Press, 1992); C. Parsons, "The Transcendental Aes-
thetic," in P. Guyer (ed.), The Cambridge Companion to Kant (Cambridge UK:
Cambridge U. Press, 1992). Parsons' original discussion of this issue, to which I
was responding in 1985, is "Kant's Philosophy of Arithmetic," in S. Morgenbesser,
P. Suppes, and M. White (eds.), Philosophy, Science, and Method: Essays in Honor
of Ernest Nagel (New York: Cornell U. Press, 1969), 568-94, reprinted, with a
postscript, in Mathematics in Philosophy (Ithaca, NY: Cornell University Press,
1983), 110-49.

2. E. Beth, "Uber Lockes 'Allgemeines Dreieck'," Kant-Studien 49 (1956-7): 361-
80; J. Hintikka, "On Kant's Notion of Intuition (Anschauung)," in T. Penelhum
and J. Macintosh (eds.), Kant's First Critique (Belmont, Calif.: Wadsworth, 1969);
"Kant's 'New Method of Thought' and His Theory of Mathematics," Ajatus 27
(1965): 37-43; "Kant on the Mathematical Method," The Monist, 51 (1967): 352-75.
These last two are reprinted in Knowledge and the Known (Dordrecht: Reidel, 1974).

3. "The Transcendental Aesthetic," p. 66; this refers back to "Kant's Philosophy of
Arithmetic," p. 112 of Mathematics in Philosophy.

4. E. Carson, "Kant on Intuition in Mathematics," presented to the Canadian Philo-
sophical Association in the spring of 1994. This paper has appeared more recently
as "Kant on Intuition in Geometry," Canadian Journel of Philosophy, 27 (1997):
489-512.

5. See Parsons, "The Transcendental Aesthetic," p. 70: "[T]here is a phenomenological
fact to which [Kant] is appealing: places, and thereby objects in space, are given in
a [single] space, therefore with a 'horizon' of surrounding space."

6. See Parsons, "The Transcendental Aesthetic," pp. 77-8: "[Euclidean constructions]
are constructions in intuition; space is, one might say, the field in which the con-
structions are carried out; it is by virtue of the nature of space that they can be
carried out."

7. All translations from Kant's German are my own and are cited, except for the Cri-
tique of Pure Reason, by volume and page numbers of the Akademie edition of
Kant's gesammelte Schriften (Berlin: Reimer (later Walter de Gruyter), 1902-);
the Critique of Pure Reason is cited by the standard A and B pagination of the
first (1781) and second (1787) editions, respectively. Kant's reply to Eberhard,
On a Discovery According to Which Any New Critique of Pure Reason Has Been
Made Superfluous by an Earlier One (1790), is translated, together with valu-
able supplementary materials, in H. Allison (ed.), The Kant-Eberhard Controversy
(Baltimore: Johns Hopkins U. Press, 1973): the present passage can be found on pp.
175-6.

8. I thus disagree with Henry Allison's contention, in Kant's Transcendental Idealism
(New Haven: Yale U. Press, 1983), pp. 83-6, that "outside [aufter]" has a nonspatial
meaning here - meaning "distinct from me (the self)" in the first clause and "(nu-
merically) distinct from one another" in the second clause - so that, in the second
clause, Kant is referring to space's role as a principle of individuation. It seems to
me, on the contrary, that the parenthetical insertion in the first clause, as well as
the "and next to" added (in the second edition) to the second clause, make it clear
that "outside" has a spatial meaning. Kant is not outlining an abstract principle of
individuation here but rather articulating an a priori perceptual structure: "outside
me" is perceptually indexical, and has the force of "outside of (and thus capable of
being seen from) this point of view."

9. Compare the above-quoted passage from B154-5 on "representing the three
dimensions of space" with the discussion of orientation in On the First Ground
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of the Distinction of Regions in Space (1768) at Ak. 2, pp. 378-9. This latter dis-
cussion begins with the construction, "because of the three dimensions [of space],"
of "three surfaces . . . that all intersect one another at right angles."

10. Allison's main ground for rejecting a spatial reading of "outside" in the passage at
A23/B38 (note 8, above) is that this makes Kant's claim appear tautological and
thus analytic. However, whereas it is indeed tautological that all "outer" objects
are in space, it does not follow that the articulation of the a priori structure of this
perceptual space is itself analytic. On the contrary, this formal structure is described
precisely by the synthetic a priori science of geometry; and the task of the tran-
scendental philosopher is then to describe the human cognitive faculties that make
this possible. In the end, therefore, the difference between the two readings rests, I
believe, on Allison's attempt (which, in fact, is common to most interpretations of
the Transcendental Aesthetic) to make the argument of the Metaphysical Exposition
entirely independent of the consideration of geometry (which is then supposed to
be confined to the Transcendental Exposition): see Kant's Transcendental Ideal-
ism, pp. 81-2, 98-9. I am indebted to Graciela De Pierris for discussion of this
point.

11. The priority of motion and the circumstance that construction is essentially kine-
matical rather than instantaneous implies that points are not independently constru-
ctible - they emerge only as products of the process of drawing lines and describing
circles (as intersections, endpoints, and so on). This clarifies Kant's claim, made in
the context of a discussion of continuous, "flowing" quantities, that "[p]oints and
instants are only limits, that is, mere places of their [space's or time's] limitation;
but places always presuppose those intuitions that they limit or are to determine"
(A169/B211).

12. How do we know, in particular, that Euclidean constructions can indeed be carried
out - and also iterated indefinitely? On the logical interpretation, since there is no
purely logical or conceptual representation possible, the only way we can even think
of or represent, say, the proposition that a circle is always constructible with a given
center and radius, is by actually possessing the construction in question (as a Skolem
function, as it were, for the existential quantifier); and, if we have the construction,
the proposition is then automatically true. The proposition is thus a priori true,
because its truth is a condition of its mere possibility. On the phenomenological
interpretation, by contrast, the truth of such geometrical axioms is not already set-
tled by their mere possibility: geometrical intuition and perceptual spatial "facts"
are then called in to settle this question. See Kant and the Exact Sciences, Ch. 1,
p. 66, and especially Ch. 2, §IV. (This note and the preceding one were prompted
by queries from Michael Dickson.)

13. Parsons has suggested to me in conversation that an emphasis on the importance
of directly perceptible phenomenological facts in grounding or explaining the ax-
ioms of geometry need not involve a commitment to an epistemological foundation
for geometry given from outside this science itself; on the contrary, it may simply
involve the attempt to articulate the significance of intuitively spatial evidence within
the science of geometry. This is an important suggestion, which I will touch upon
briefly later.

14. Eberhard's appeal to Apollonius appears in his Philosophisches Magazin, I (1789):
158-9. See Ak. 20, p. 505. Kant orchestrated a full-scale counterattack, which in-
cluded (besides his own On a Discovery) a review essay by Reinhold (Ak. 20,
pp. 385ff). See Allison's The Kant-Eberhard Controversy, for further details and a
selection of relevant materials.
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15. See T. L. Heath (ed.), Apollonius ofPerga: Treatise on Conic Sections (Cambridge
UK: Cambridge U. Press, 1896), pp. 1-9 (Prop. 1.11 is Proposition 1 in Heath's
numbering). The notation "y2 = ax" is used by Kant.

16. This terminology derives from Pappus's commentary on Apollonius's two books
on plane loci. Loci (curves) that are neither plane nor solid - including both higher
algebraic curves and transcendental curves - are here termed "curvilinear." See
A. Jones (ed.), Pappus of Alexandria: Book 7 of the Collection (Berlin: Springer,
1986), pp. 104-7.

17. Eberhard explains in a correction published in his Philosophisches Magazin, III
(1790/91): 205-7, that he had mistakenly cited Borelli's 1661 edition of Books V-
VII; the edition in question is actually that of Books I-IV by Claudius Richardus
(1655).

18. In the Metaphysical Foundations of Natural Science (1786), Kant distinguishes
between "geometrical" and "mechanical construction" (Ak. 4, 493) and, accord-
ingly, between the "mathematical construction" and the "mechanical execution
[Ausfuhrung]" of the composition of velocities - where the latter shows "how it can
be brought forth through nature or art by means of certain instruments and forces"
(494).

19. Descartes's new version of the distinction between "geometrical" and "mechanical"
curves, which is explicitly intended as a correction to the traditional classification of
Pappus (see note 16), occurs at the beginning of Book II of the Geometrie, in a section
entitled "What curved lines are admitted in geometry" - see D. Smith and M. Latham
(trans.), The Geometry of Rene Descartes (La Salle, II: Open Court, 1925), pp. 40-9.
For discussion, see A. Holland, "Shifting the Foundations: Descartes's Transforma-
tion of Ancient Geometry," Historia Mathematica, 3 (1976): 21-49, and especially
H. Bos, "On the Representation of Curves in Descartes' Geometrie" Archive for
History of Exact Science, 24 (1981): 295-338 and "The Structure of Descartes'
Geometrie" in G. Belgioiso (ed.), Descartes: il Metodo e i Saggi (Rome, Istituto
della Enciclopedia Italiana, 1990). I am indebted to Bos, and also to Mark Wilson,
for urging me to consider this question of the scope of geometrical construction.

20. Newton gives a well-known mechanical construction of conies (which may very well
have been familiar to Kant), by rotating lines and thereby describing intersections,
in Lemma XXI of Principia, Book I.

21. As noted earlier, I therefore reject the idea - characteristic of the phenomenological
interpretation (compare note 5) - that the unity and unboundedness of space can be
directly and immediately given as some kind of quasi-perceptual fact.

22. Compare Kant's remarks about the relationship between the "category of mag-
nitude" and the perception of the spatial figure of a house at B162. I am
indebted to Parsons for prompting this discussion of the connections among intuitive
spatial unity, the transcendental unity of apperception, and the categories of quantity.

23. These latter questions are central to Kant's Metaphysical Foundations of Natural
Science. See Chapters 3 and 4 of Kant and the Exact Sciences, as well as my "Causal
Laws and the Foundations of Natural Science," in P. Guyer (ed.), The Cambridge
Companion to Kant, pp. 161-99.

24. From a modern, four-dimensional point of view, we are concerned only with contin-
uous transformations within a single plane of simultaneity, and thus the dynamical
question of how different planes of simultaneity are related to one another over time
is not relevant here. Kant himself, in the first chapter on Phoronomy of the Meta-
physical Foundations of Natural Science, says that, in phoronomy, "motion can be
considered solely as describing of a space, but still in such a way that I attend not
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merely, as in geometry, to the space that is described, but also to the time in which
and thus the speed with which a point describes the space" (Ak. 4, p. 489). And
in §24 of the second edition Deduction, in the passage from B154-5 cited earlier,
after giving examples of geometrical synthesis, Kant describes how we represent
"time itself" by attending, not to the space described in drawing a straight line, but
to the act of successive determination by which we thereby determine inner sense
and thus "first produce the concept of succession." (The concept of succession is
of course a component of the dynamical category of causality - more precisely, of
its schema: A144/B183 and compare B291-2.) I am indebted to Howard Stein for
prompting this discussion of the nature and status of geometrical motion.

25. The basic idea of using Helmholtz's kinematical conception of spatial intuition to
build a bridge between the phenomenological and logical approaches to interpreting
Kant's own theory of spatial intuition is due to Robert DiSalle - in comments on
the paper by Emily Carson cited in note 4. My own work on the present paper grew
directly out of conversations with DiSalle.

26. "Uber die Tatsachen, die der Geometrie zugrunde liegen," Nachrichten von der
koniglichen Gesellschaft der Wissesschaften zu Gottingen: no. 9, (1868): 39-71,
translation in R. Cohen and Y. Elkana (eds.), Hermann von Helmholtz: Epistemo-
logical Writings (Dordrecht, The Netherlands: Reidel, 1977), Ch. II.

27. "Uber die Ursprung und die Bedeutung der geometrischen Axiomen," first given
as a lecture in 1870 and published in Populdre wissenschaftliche Vortrdge, Vol.
2 (Braunschweig: F. Vieweg, 1871). I cite from H. Horz and S. Wollgast (eds.),
Philosophische Vortrdge und Aufsdtze (Berlin: Akademie Verlag, 1971), p. 214 -
this corresponds to the translation in R. Cohen and Y. Elkana (eds.), Hermann von
Helmholtz: Epistemological Writings, p. 23.

28. Appendix III to the address of 1878, "Die Tatschen in der Wahrnemung," first
published in Vortrdge und Reden (Braunschweig: F. Vieweg, 1884). I cite from
H. Horz and S. Wollgast (eds.), Philosophische Vortrdge und Aufsdtze, p. 299, which
corresponds to Cohen and Elkana (eds.), Hermann von Helmholtz, pp. 162-3. "Space
can be transcendental without the axioms being so" is the title of Appendix II.

29. I thus interpret Helmholtz as holding that the general, "transcendental" form of
spatial intuition includes the condition of free mobility (and thus constant curva-
ture) but not the properties of specifically Euclidean geometry (zero curvature). As
Howard Stein, in particular, has emphasized to me, this is certainly not the only pos-
sible interpretation: one might also take the most general, "transcendental" form of
space to include, for example, only topological and manifold properties. The present
reading is supported by the following passage from "On the Origin and Meaning of
the Axioms of Geometry," which initiates the criticism of the specifically Kantian
theory of intuition:

We will now have to ask further where those particular determinations come from that charac-
terize our space as plane space, since these, as has been shown, are not included in the general
concept of an extended magnitude of three dimensions and free mobility of the structures
contained therein. They are not necessities of thought, which flow from the concept of such a
manifold and its measurability or from the most general concept of a rigid structure contained
therein and its freest mobility. (Horz and Wollgast (eds.), Philosophische Vortrdge, pp. 206-7;
Cohen and Elkana (eds.), Hermann von Helmholtz, p. 17)

One should also note that whenever Helmholtz explicitly states what he calls "the
axioms of geometry," these always characterize specifically Euclidean space.
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30. See "The Facts in Perception" - Horz and Wollgast (eds.), Philosophische Vortrdge,
pp. 262-5; Cohen and Elkana (eds.), Hermann von Helmholtz, pp. 128-31.

31. See Horz and Wollgast (eds.), Philosophische Vortrdge, pp. 256-8; Cohen and
Elkana (eds.), Hermann von Helmholtz pp. 122-4.

32. Kant's discussion of orientation cited in note 9 uses the human body to determine
the relations above-below, right-left, and forward-backward. This amounts to using
one's body to pick out a particular triad of mutually perpendicular line segments cor-
responding, respectively, to these three relations. This procedure should be viewed,
I believe, as an account of how we apply in experience the purely geometrical notion
of orientation - which notion is itself given by an entirely arbitrary construction of
three mutually perpendicular line segments in pure intuition. It would be interest-
ing to apply these ideas to Kant's conception of incongruent counterparts, but this
will have to wait for another occasion. (This note was prompted by comments and
suggestions from Robert Hanna, Onora O'Neill, and Allen Wood.)

33. This is connected with the circumstance, remarked in note 24, that the purely geo-
metrical motion involved in figurative synthesis does not yet involve the questions of
ft'rae-determination characteristic of the dynamical as opposed to the mathematical
categories. Compare A160/B199:

In the application of the pure concepts of the understanding to possible experience the use
of their synthesis is either mathematical or dynamical. For it applies partly to mere intuition,
partly to the existence of an appearance in general. But the a priori conditions of intuition are
necessary throughout in relation to a possible experience, those of the existence of objects of
a possible empirical intuition are in themselves only contingent.

The dynamical categories essentially involve the conditions for transforming per-
ceptions or empirical intuitions into law-governed experience, and thus, as I have
argued elsewhere (see note 23), they also involve the conditions for transforming
apparent motions into true motions - where the (Newtonian) laws of motion here
realize or embody the Analogies of Experience. The purely mathematical synthesis
expressed in pure geometrical motion, by contrast, has nothing to do with the laws
of motion. Once we follow Helmholtz in basing geometry on real bodily motion,
however, we simply cannot avoid entangling geometry with the laws of motion: we
cannot avoid facing the fact, in modern terms, that the four-dimensional structure
of space-time is primary.

34. The crucial point is that, on the phenomenological interpretation, the truths of ge-
ometry appear as brute "perceptual facts" - even if they are conceived as intuitively
evident truths internal to the (supposedly) a priori science of geometry as in note 13.
On this kind of interpretation, there is no particular difficulty in thinking or con-
ceiving the truths of geometry independently of spatial intuition, and the latter is
then called in only to establish that some particular set of axioms (the Euclidean
axioms) is in fact true. On the logical interpretation, by contrast, the truths of ge-
ometry function as a priori preconditions without which it would be impossible
even to think of or to conceive spatial structures in the first place: without the
truths of geometry there would simply be no "spatial facts" (see note 12). If one
now asks where the "spatial facts" invoked by the phenomenological interpreta-
tion come from, this interpretation is then vulnerable, from a philosophical point
of view, to naturalism and empiricism - according to which such "facts" must rest,
in the end, on contingent conditions of our perceptual apparatus and/or contingent
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characteristics of physical space (see Parsons, "The Transcendental Aesthetic," pp.
72-5). Here I am again indebted to De Pierris - compare her discussion of Parsons's
paper in her "Review of The Cambridge Companion to Kant," Ethics, 104 (1994):
655-7.

35. "On the Foundations of Geometry," The Monist, 9 (1898), pp. 41-3.
36. For a discussion of Poincare's theory of arithmetic, see J. Folina, Poincare and the

Philosophy of Mathematics (New York: Macmillan, 1992).
37. La Science etVHypothese (Paris: Flammarion, 1902), Ch. IV - 1 cite from the trans-

lation of G. Halsted in The Foundations of Science (Lancaster, Pa.,: The Science
Press, 1913), p. 75.

38. La Science et VHypothese, Ch. Ill, citing from G. Halsted (trans.), Foundations of
Science, p. 63. In the popular Dover edition of Science and Hypothesis (New York,
1952), p. 48, the last sentence is incorrectly translated as: "These geometries of
Riemann, so interesting on various grounds, can never be, therefore, purely ana-
lytical, and would not lend themselves to proofs analogous to those of Euclid" -
thereby entirely reversing its sense (and the preceding sentence on p. 47 incorrectly
has "variable figure" instead of "invariable figure").

39. Since Poincare thus rules out nonhomogeneous manifolds of variable curvature,
his conventionalism is entirely incompatible with the general theory of relativity -
a circumstance that has led to considerable confusion among his followers: see
my "Poincare's Conventionalism and the Logical Positivists," in J.-L. Greffe, G.
Heinzmann, and K. Lorenz (eds.), Henri Poincare: Science and Philosophy (Berlin
and Paris: Blanchard and Akademie Verlag, 1996), pp. 333-44. Indeed, since
Poincare (like Helmholtz) bases geometry on the free mobility of real physical
bodies, his conception is also incompatible with the space-time structure of special
relativity - where, despite the fact that each individual plane of simultaneity is Eu-
clidean, there is still no free mobility of rigid bodies in space-time (compare notes
24 and 33).

40. Poincare's explicit discussion of "The Reasoning of Euclid" in "On the Foundations
of Geometry," pp. 32-4, focuses on proofs that proceed by translating and rotating
figures rather than on Euclidean constructions. Yet, as we will see, it is nonetheless
possible to forge a connection between these two ideas. Helmholtz suggests such
a connection in "On the Origin and Meaning of the Axioms of Geometry" - Horz
and Wollgast (eds.), Philosophische Vortrdge, pp. 190-1; Cohen and Elkana (eds.),
Hermann von Helmholtz, pp. 4-5.

41. For this and the next three paragraphs, see M. Greenberg, "Euclidean and Non-
Euclidean Geometries Without Continuity," American Mathematical Monthly, 86:
757-64.

42. "Neue Begriindung der Bolyai-Lobatschefsckyschen Geometrie," Mathematische
Annalen, 57 (1903): 137-50. This appears as Appendix III to Foundations of Ge-
ometry ( La Salle: Open Court, 1971).

43. Section 34 of J. Bolyai, Scientiam Spatii Absolute Veram, published as an Appendix
to W. Bolyai, Tentamen Juventutem Studiosam in Elementa Matheseos Purae, trans-
lated in G. Bonola, Non-Euclidean Geometry (New York: Dover, 1955), pp. 37-8.

44. For the elliptic case, see W. Schwabhauser, "On Models of Elementary Ellip-
tic Geometry," in J. Addison (ed.), The Theory of Models (Amsterdam: North-
Holland, 1965). If one wants an elementary geometry going beyond straight-edge
and compass constructions to include all algebraic curves in the manner of Descartes
(note 19), then one can, by using a first-order continuity schema, also construct
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geometries over real closed fields in all three cases of constant curvature: see W.
Schwabhauser, "Metamathematical Methods in Foundations of Geometry," in Y.
Bar-Hillel (ed.), Logic, Methodology and Philosophy of Science (Amsterdam: North-
Holland, 1965).

45. Weyl explains the background of his mathematical investigations in Husserlian phe-
nomenology in the Introduction to Raum, Zeit, Materie (Berlin: Springer, 1918),
translated as Space-Time-Matter (New York: Macmillan, 1952). For Becker, see
"Beitrage zur phanomenologischen Begrundung der Geometrie und ihrer physi-
kalishen Anwendung," Jahrbuch fiir Philosophic und phdnomenologische
Forschung, 6 (1923): 385-560. For further discussion, in the context of Rudolf
Carnap's contrasting (nonkinematical) conception of geometrical intuition devel-
oped in his dissertation of 1921, see my "Carnap and Weyl on the Foundations of
Geometry and Relativity Theory," Erkenntnis, 42 (1995): 247-60.

46. Philosophic der Mathematik und Naturwissenschaft (Berlin: Leibniz Verlag, 1927),
§18, pp. 99-100, translated as Philosophy of Mathematics and Natural Science
(Princeton, NJ: Princeton University Press, 1949), p. 137.

47. In "Die Einzigartigkeit der Pythagoreischen MaBbestimmung," Mathematische
Zeitschrift, 12 (1922): 114-46, where Weyl first proves his group-theoretical the-
orem, he begins by stating that the infinitesimally Euclidean nature of the metric
is "characteristic of space as form of appearance" (p. 116). (One should note that
Weyl's "purely infinitesimal" approach involves an extended conception of metri-
cal structure as well, where a "Weyl structure" on a manifold consists of a class
of conformally equivalent Riemannian metrics, each paired with an accompanying
"gauge factor")
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