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Some Computational Constraints in Epistemic Logic

Abstract

Some systems of modal logic, such as S5, which are often used as epistemic logics with the

‘necessity’ operator read as ‘the agent knows that’, are problematic as general epistemic

logics for agents whose computational capacity does not exceed that of a Turing machine

because they impose unwarranted constraints on the agent’s theory of non-epistemic aspects

of the world, for example by requiring the theory to be decidable rather than merely

recursively axiomatizable. To generalize this idea, two constraints on an epistemic logic are

formulated: r.e. conservativeness, that any recursively enumerable theory R in the

sublanguage without the epistemic operator is conservatively extended by some recursively

enumerable theory in the language with the epistemic operator which is permitted by the

logic to be the agent’s overall theory; the weaker requirement of r.e. quasi-conservativeness

is similar except for applying only when R is consistent. The logic S5 is not even r.e. quasi-

conservative; this result is generalized to many other modal logics. However, it is also proved

that the modal logics S4, Grz and KDE are r.e. quasi-conservative and that K4, KE and the

provability logic GLS are r.e. conservative. Finally, r.e. conservativeness and r.e. quasi-

conservativeness are compared with related non-computational constraints.

Keywords: Epistemic; epistemic logic; modal logic; knowledge representation; recursively

enumerable; computational.
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Some Computational Constraints in Epistemic Logic

1. INTRODUCTION

This paper concerns limits that some epistemic logics impose on the complexity of an

epistemic agent’s reasoning, rather than limits on the complexity of the epistemic logic itself.

As an epistemic agent, one theorizes about a world which contains the theorizing of

epistemic agents, including oneself. Epistemic logicians theorize about the abstract structure

of epistemic agents’ theorizing. This paper concerns the comparatively simple special case of

epistemic logic in which only one agent is considered. Such an epistemic agent theorizes

about a world which contains that agent’s theorizing. One has knowledge about one’s own

knowledge, or beliefs about one’s own beliefs. The considerations of this paper can be

generalized to multi-agent epistemic logic, but that will not be done here. Formally, single-

agent epistemic logic is just standard monomodal logic; we call it ‘epistemic’ in view of the

envisaged applications.

In epistemic logic, we typically abstract away from some practical computational

limitations of all real epistemic agents. For example, we are not concerned with their failure

to infer from a proposition q the disjunction q Z r for every unrelated proposition r. What

matters is that if some propositions do in fact follow from the agent’s theory (from what the

agent knows, or believes), then so too do all their logical consequences. For ease of
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exposition, we may idealize epistemic agents and describe them as knowing whatever follows

from what they know, or as believing whatever follows from what they believe, but we could

equally well redescribe the matter in less contentious terms by substituting ‘p follows from

what one knows’ for ‘one knows p’ or ‘ p follows from what one believes’ for ‘one believes p’

throughout the informal renderings of formulas, at the cost only of some clumsiness. Thus, if

we so wish, we can make what looks like the notorious assumption of logical omniscience

true by definition of the relevant epistemic operators. On suitable readings, it is a triviality

rather than an idealization. It does not follow that no computational constraints are of any

concern to epistemic logic. For if one’s knowledge is logically closed by definition, that

makes it computationally all the harder to know that one does not know something: in the

standard jargon, logical omniscience poses a new threat to negative introspection. That threat

is one of the phenomena to be investigated in this paper.

In a recursively axiomatizable epistemic logic, logical omniscience amounts to closure

under a recursively axiomatizable system of inferences. Thus all the inferences in question

can in principle be carried out by a single Turing machine, an idealized computer. Epistemic

logicians do not usually want to make assumptions which would require an epistemic agent to

exceed every Turing machine in computational power. In particular, such a requirement

would presumably defeat the purpose of the many current applications of epistemic logic in

computer science. By extension, epistemic logicians might prefer not to make assumptions

which would permit an epistemic agent not to exceed every Turing machine in computational

power only under highly restrictive conditions. Of course, such assumptions might be

perfectly appropriate in special applications of epistemic logic to cases in which those
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restrictive conditions may be treated as met. But they would not be appropriate in more

general theoretical uses of epistemic logic.

As an example, let us consider the so-called axiom of negative introspection alluded

to above. It may be read as the claim that if one does not know p then one knows that one

does not know p, or that if one does not believe p then one believes that one does not believe

p. In terms of theories: if one’s theory does not entail p, then one’s theory entails that one’s

theory does not entail p. That assumption is acceptable in special cases for special values of

‘p’. However, for a theory to be consistent is in effect for there to be some p which it does not

entail. On this reading, negative introspection implies that if one’s theory is consistent then it

entails its own consistency. But, by Gödel’s second incompleteness theorem, if one’s theory

is recursively axiomatizable and includes Peano arithmetic, then it entails its own consistency

only if it is inconsistent. Thus, combined with the incompleteness theorem, negative

introspection implies that if one’s theory is recursively axiomatizable then it includes Peano

arithmetic only if it is inconsistent. Yet, in a wide range of interesting cases, the output of a

Turing machine, or the theory of an epistemic agent of equal computational power, is a

consistent recursively axiomatizable theory which includes Peano arithmetic. Thus, except in

special circumstances, the negative introspection axiom imposes an unwarranted constraint on

the computational power of epistemic agents.

Naturally, such an argument must be made more rigorous before we can place much

confidence in it. That will be done below. The problem for the negative introspection axiom

turns out to be rather general: it arises not just for extensions of Peano arithmetic but for any

undecidable recursively axiomatizable theory, that is, for any theory which is the output of
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some Turing machine while its complement is not. It is very natural to consider epistemic

agents whose theories are of that kind.

The aim of this paper is not primarily to criticize the negative introspection axiom.

Rather, it is to generalize the problem to which that axiom gives rise, to formulate precisely

the conditions which a system of epistemic logic must satisfy in order not to be susceptible to

such problems, and to investigate which systems satisfy those conditions. The conditions in

question will be called r.e. conservativeness and r.e. quasi-conservativeness. Very roughly

indeed, a system satisfies these conditions if it has a wide enough variety of models in which

the epistemic agent is computationally constrained. Such models appear to be among the

intended models on various applications of epistemic logic. As already noted, systems of

epistemic logic which do not satisfy the conditions may be appropriate for other applications.

But it is time to be more precise.

2. ELEMENTARY EPISTEMIC LOGIC

Let L be the language consisting of countably many propositional variables p0, p1, p2, ... (p

and q represent arbitrary distinct variables), the falsity constant ] and the material conditional

H. Other operators are treated as metalinguistic abbreviations in the usual way. We expand L

to the language L �  of propositional modal logic by adding the operator a. c� abbreviates

¬a¬�. Unless otherwise specified, the metalinguistic variables �, �, �, ... range over all

formulas of L � . We use the necessity symbol a from modal logic to make various formulas
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and formal systems look familiar, without prejudice to its interpretation. We reinterpret a as

something like ‘I know that’ or ‘I believe that’. To generalize over reinterpretations, we use

the neutral verb ‘cognize’ for a in informal renditions of formulas.

A theory in L �  is a subset of L �  containing all truth-functional tautologies and closed

under modus ponens for H (MP). A model M of L �  induces a function M( ): L �  � {0, 1}

where M(]) = 0 and M(� H �) = 1 if and only if M(�) � M(�). Intuitively, M(�) = 1 if and

only if � is true in M; M(�) = 0 if and only if � is false in M. An application of epistemic

logic determines a class of its intended models. The logic of the application is the set of

formulas � such that M(�) = 1 for every intended model M; thus the logic is a theory in L � .

Of course, we can also define a relation of logical consequence on the models, but for present

purposes it is simpler to identify a logic with the set of its theorems.

Since atomic sentences are treated simply as propositional variables, we may

substitute complex formulas for them. More precisely, we assume that for each intended

model M and uniform substitution ) there is an intended model M
�
 such that for every �

M
�
(�) = M()�). Thus the logic of the application is closed under uniform substitution (US).

A modal logic is a theory in L �  closed under US. The logic of an application is a

modal logic. The smallest modal logic is PC, the set of all truth-functional tautologies. If * is

a modal logic, we write _ �  � when ��*. For any XIL � , we define X _ �  � if and only if

_ �  �X0 H � for some finite X0IX (�X0 and �X0 are the conjunction and disjunction

respectively of X0 on a fixed ordering of the language). X is *-consistent unless X _ 	  ]. A

maximal *-consistent set is a *-consistent set not properly included in any *-consistent set.

If M is a model, let a-1M = {�: M(a�) = 1}. Thus a-1M expresses what the agent
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cognizes in M. If * is the logic of an application on which a-1M is a theory in L 
  for every

intended model M, then for all formulas � and �, _ �  a(� H �) H (a� H a�) (axiom schema

K) and if _PC � then _ �  a� (rule RNPC). A modal logic satisfying RNPC and K is prenormal. If

cognizing is knowing or believing, then prenormality is an extreme idealization, a form of

logical omniscience. But if cognizing is the closure of knowing or believing under at least

truth-functional consequence, then prenormality is innocuous. The rule RNPC differs from the

stronger and better-known rule RN (necessitation or epistemization): if _ �  � then _ �  a�. A

modal logic * satisfying RN and K is normal. Unlike RNPC, RN requires the agent to cognize

all theorems of the epistemic logic, not just all truth-functional tautologies. For instance, a\

is a theorem of every prenormal logic by RNPC, but since it is not a theorem of PC we cannot

iterate the rule; aa\ is not a theorem of the smallest prenormal logic. By contrast, we can

iterate RN, and aa\ is a theorem of every normal modal logic. Prenormality does not imply

that agents cognize their own cognizing. It merely implies that they can formulate

propositions about cognizing, for since a� H a� is a truth-functional tautology, a(a� H a�)

is a theorem of every prenormal logic. Since normality entails prenormality, results about all

prenormal logics apply to all normal modal logics. Every logic extending a prenormal logic is

prenormal; by contrast, some nonnormal logics extend normal logics, although any extension

of a normal logic is at least prenormal.

Any normal logic * has a possible worlds semantics where a� is true at a world w in

a model M if and only if � is true at every world in M to which w has the accessibility

relation of M. Intuitively, a world x is accessible from w if and only if what the agent

cognizes at w is true at x. In other words, one world is accessible from another if and only if
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for all one cognizes in the latter one is in the former. The formulas � such that a� is true at w

express what the agent cognizes at w. For every normal logic * there is a class C of models

such that * consists of exactly the formulas true at every world in every model in C.

Many authors require the accessibility relation to be an equivalence relation (reflexive,

symmetric and transitive) for every intended model of their application. A common attitude is

expressed by the authors of a standard text, who write that the postulate ‘seems reasonable for

many applications we have in mind’ but ‘we can certainly imagine other possibilities’ (Fagin,

Halpern, Moses and Vardi 1995, 33). For example, if x is accessible from w if and only if

appearances to the agent are identical in x and w, then accessibility is an equivalence relation

because identity in any given respect is an equivalence relation. The logic of the class of all

possible worlds models in which accessibility is an equivalence relation is the modal system

known as S5: _S5 � if and only if � is true in every model for which accessibility is an

equivalence relation. Since equivalence relations correspond to partitions of the set of worlds,

S5 is also known as the logic of the partitional conception of knowledge. S5 is the smallest

normal modal logic with the theorem schemas T (a� H �) and E (¬a� H a¬a�). T

(truthfulness) says that the agent cognizes only truths; it is appropriate for applications on

which one cognizes only what follows from what one knows. T corresponds to the condition

that accessibility be reflexive. For applications on which one cognizes what follows from

what one believes, T would have to be dropped, perhaps replaced by the weaker principle D

(a� H c�). D requires cognition to be consistent in the sense that an agent who cognizes

something does not also cognize its negation. D corresponds to the condition that accessibility

be serial (from every world some world is accessible). E is the principle of negative
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introspection: cognition records its omissions in the sense that agents who do not cognize

something cognize that they do not cognize it. E corresponds to the condition that

accessibility be euclidean (worlds accessible from a given world are accessible from each

other). In S5 we can derive the principle of positive introspection 4 (a� H aa�), that

cognition records its contents in the sense that agents who cognize something cognize that

they cognize it. 4 corresponds to the condition that accessibility be transitive. If T is dropped

or weakened to D then 4 is no longer derivable from E, so 4 might be added as an

independent schema. Accessibility is reflexive (T) and euclidean (E) if and only if it is an

equivalence relation.

3. COMPUTATIONAL CONSTRAINTS

To formulate computational constraints, we generalize concepts from recursion theory to L �

using a standard intuitively computable coding procedure. A model M is r.e. if and only if

a
-1M (which expresses what the agent cognizes in M) is an r.e. (recursively enumerable)

theory in L � . In that sense, the agent’s cognition in an r.e. model does not exceed the

computational capacity of a sufficiently powerful Turing machine.

Consider the restriction of a-1M to the a-free sublanguage L, L�a-1M. Let a-1M be

an r.e. theory in L  . Thus L�a-1M is an r.e. theory in L. It is the part of the agent’s overall

theory in M which is not specifically Epistemic. From the standpoint of general epistemic

logic, can we reasonably impose any further constraints on L�a-1M beyond recursive
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enumerability?

If a-1M is required to be consistent, L�a-1M is consistent too. Can we limit the

possible values of L�a-1M still further? For many applications we cannot. L�a-1M simply

expresses what the agent cognizes in M about some aspect of reality. The agent can store any

r.e. theory in L as a recursive axiomatization (Craig 1953). If the agent might cognize that

aspect of reality simply by having learned a theory about it on the testimony of a teacher, any

(consistent) r.e. theory in L is possible. In particular, we can interpret the propositional

variables as mutually independent. For example, given a black box which may or may not

flash a light on input of a symbol for a natural number, we can read pi as ‘The light flashes on

input i’. Then any (consistent) r.e. theory in L could exhaust everything expressible in L

which the agent (with only the computational power of a Turing machine) has learned about

the black box. Such situations seem quite reasonable. If we want an epistemic logic to have a

generality beyond some local application, it should apply to them: such situations should

correspond to intended models. Now any application which has all those intended models

thereby satisfies (*) or (*con), depending on whether the epistemic agent’s theory is required to

be consistent:

(*) For every r.e. theory R in L, L�a-1M = R for some r.e. intended model M.

(*con) For every consistent r.e. theory R in L, L�a-1M = R for some r.e. intended model M.

(*) is appropriate for readings of a like ‘It follows from what I believe that ...’, if the agent is
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not required to be consistent. For readings of a like ‘It follows from what I know that ...’,

only (*con) is appropriate, for one can know only truths and any set of truths is consistent. We

can define corresponding constraints on a modal logic * without reference to models:

* is r.e. conservative if and only if for every r.e. theory R in L, there is a maximal *-

consistent set X such that a-1X is r.e. and L�a-1X = R.

* is r.e. quasi-conservative if and only if for every consistent r.e. theory R in L, there is a

maximal *-consistent set X such that a-1X is r.e. and L�a-1X = R.

Here a-1X = {��L � : a��X}. Roughly, if * is r.e. (quasi-)conservative then every

(consistent) r.e. theory in the language without a is conservatively extended by an r.e. theory

in the language with a such that it is consistent in * for R to be exactly what the agent

cognizes in the language without a while what the agent cognizes in the language with a

constitutes an r.e. theory. If an application satisfies (*), its logic is r.e. conservative, for X can

be the set of formulas true in M. Conversely, any r.e. conservative logic is the logic of some

application which satisfies (*), for some appropriate kind of intended model. The same

relationships hold between (*con) and r.e. quasi-conservativeness. For many applications of

epistemic logic, the class of intended models is quite restricted and even (*con) does not hold.

But if the application interprets a as something like ‘It follows from what I believe/know

that’, without special restrictions on the epistemic subject, then situations of the kind

described above will correspond to intended models and the logic of the application will be
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r.e. [quasi-] conservative. In this paper we do not attempt to determine which informally

presented applications of epistemic logic satisfy (*) or (*con). We simply investigate which

logics are r.e. [quasi-] conservative.

Trivially, every r.e. conservative modal logic is r.e. quasi-conservative. Examples will

be given below of r.e. quasi-conservative normal modal logics which are not r.e. conservative.

For prenormal modal logics, r.e. conservativeness can be characterized in terms of r.e. quasi-

conservativeness in a simple way which allows us to transfer results about one to the other:

Proposition 1. Let * be a prenormal modal logic. Then * is r.e. conservative if and only if *

is r.e. quasi-conservative and not _ �  c\.

Proof: Let aL = {a�: ��L}. (<) Trivially, * is r.e. quasi-conservative if r.e. conservative.

Suppose that _ �  c\. Since aL _ �  a¬\, aL is *-inconsistent. Thus L�a-1X = L for no *-

consistent set X. Since L is an r.e. theory in L, * is not r.e. conservative. (=) Suppose that *

is r.e. quasi-conservative but not r.e. conservative. Since L is the only inconsistent theory in

L, there is no maximal *-consistent set X such that a-1X is r.e. and L�a-1X = L. If aL is *-

consistent, then some maximal *-consistent set X extends aL, so L�a-1X = L; but for ��L �

_ �  ] H �, so _ �  a] H a� by prenormality, so a-1X = L �  because a]�X, so a-1X is r.e. Thus

aL is *-inconsistent, i.e. for some �0,...,�m�L, _ �  ¬�{a�i: i�m}. But for i�m, _ �  a¬\ H a�i

by prenormality, so _ �  ¬a¬\.

Examination of the proof shows that the prenormality condition can be weakened to this: if

_PC � H � then _ �  a� H a�. An example of a reading of a which verifies this weaker
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condition but falsifies prenormality is ‘There is a subjective probability of at least x that’,

where 0<x<1, for prenormality implies that _ �  (ap Y aq) H a(p Y q), whereas this reading

invalidates that formula. Prenormality can be weakened in similar ways for subsequent

propositions.

R.e. conservativeness and r.e. quasi-conservativeness do not state upper or lower

bounds on the epistemic agent’s computational capacity. Rather, they state upper bounds on

the strength of the epistemic logic itself; evidently a modal logic with an r.e. [quasi-]

conservative extension is itself r.e. [quasi-] conservative. But too strong a logic can impose

unwarranted restrictions on the agent’s theory of the world given an upper bound on the

agent’s computational capacity.

4. SOME NON-R.E. QUASI-CONSERVATIVE LOGICS

Which modal logics are not r.e. [quasi-] conservative? Obviously, since _S5 c\, the logic S5

is not r.e. conservative. Since S5 is decidable, this does not result from non-recursiveness in

S5 itself. More significantly:

Proposition 2. S5 is not r.e. quasi-conservative.

Proof (Skyrms 1978: 377 and Shin and Williamson 1994 Proposition 3 have similar proofs of

related facts about S5): Let R be a non-recursive r.e. theory in L; R is consistent. Suppose that

a
-1X is r.e. and L�a-1X = R for some maximal S5-consistent set X. Now
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L-R = {�: a¬a��X}�L. For if ��L-R then a�ÕX, so ¬a��X; but _S5 ¬a� H a¬a�, so

a¬a��X since X is maximal S5-consistent. Conversely, if a¬a��X then ¬a��X since

_S5 a¬a� H ¬a�, so a�ÕX, so �ÕR since L�a-1X = R. Since a-1X is r.e., so is

{�: a¬a��X}�L, i.e. L-R. Contradiction.

Thus the partitional conception of knowledge prevents a subject with the computational

capacity of a Turing machine from having as the restriction of its theory to the a-free

language any non-recursive r.e. theory (for other problems with the S5 schema in epistemic

logic and further references see Williamson (2000, 23-4, 166-7, 226-8, 316-317)). Thus S5 is

unsuitable as a general epistemic logic for Turing machines.

The proof of Proposition 2 depends on the existence of an r.e. set whose complement

is not r.e. By contrast, the complement of any recursive set is itself recursive; decidability,

unlike semi-decidability, is symmetric between positive and negative answers. The analogue

of Proposition 2 for a notion like r.e. quasi-conservativeness but defined in terms of

recursiveness rather than recursive enumerability would be false. For it is not hard to show

that if R is a consistent recursive theory in L, then there is a maximal S5-consistent set X in

L �  such that a-1X is recursive and L�a-1X = R. Thus S5 imposes computational constraints

not on very clever agents (whose theories need not be r.e.) or on very stupid agents (whose

theories must be recursive) but on half-clever agents (whose theories must be r.e. but need not

be recursive).

Proposition 2 is the rigorous version of the argument sketched in the Introduction. Can

we generalize it? The next result provides a rather unintuitive necessary condition for r.e.
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quasi-conservativeness which nevertheless has many applications.

Theorem 3. Let * be a modal logic such that for some formulas �0,...,�n�L �  and �0,...,�n�L,

_ �  �{a�i: i�n} and, for each i�n, _ �  (a�i Y a�i) H a] and not _PC ¬�i. Then * is not r.e.

quasi-conservative.

Proof: There are pairwise disjoint r.e. subsets I0,I1,I2,... of the natural numbers Û such that for

every total recursive function f, i�If(i) for some i�Û. For let f[0],f[1],f[2],... be a recursive

enumeration of all partial and total recursive functions on Û and set Ii = {j: f[j](j) is defined

and = i}; then j�If[j](j) whenever f[j] is total, Ii is r.e. and Ii�Ij={} whenever igj. Now suppose

that (i) _ �  �{a�i: i�n}; (ii) _ �  (a�i Y a�i) H a] for each i�n; (iii) _PC ¬�i for no i�n. Let m

be the highest subscript on any propositional variable occurring in �0,...,�n. For all i�Û, let )i

and -i be substitutions such that )ipj = pi(m+1)+j and -ipi(m+1)+j = pj for all j�Û. Set U =

{)i�j: i�Ij}. Since the )i are recursive and the Ij are r.e., U is r.e. Now _PC ¬)i�j for no i,j,

otherwise _PC ¬-i)i�j, i.e. _PC ¬�j, contrary to (iii). Moreover, if hgi then )h�j and )i�k have no

propositional variable in common. Thus if h�Ij and i�Ik and )h�j has a variable in common

with )i�k, then h=i, so j=k because the Ij are pairwise disjoint. Hence no two members of U

have a propositional variable in common. Thus U is consistent. Let R be the smallest theory

in L containing U; R is consistent and r.e. Suppose that for some maximal *-consistent set X,

a
-1X is r.e. and L�a-1X = R. Let the total recursive function g enumerate a-1X. Fix j�Û. By

(i), _ �  �{a)j�i: i�n} since * is closed under US, so a)j�i�Y for some i�n since Y is

maximal *-consistent. Thus g(k)=)j�i for some k; let k(j) be the least k such that

g(k)�{)j�i: i�n}. Let f(j) be the least i�n such that g(k(j))=)j�i. Since g enumerates a-1X,



17

a)j�f(j)�X. Since g and )j are total recursive, k is total recursive, so f is total recursive. Thus

j�If(j) for some j�Û, so )j�f(j)�UIR since f(j)�n. Since L�a-1X = R, a)j�f(j)�X. By (ii),

_ �  (a�f(j) Y a�f(j)) H a], so _ �  (a)j�f(j) Y a)j�f(j)) H a]; since X is maximal *-consistent,

a]�X. Thus ]�R, contradicting the consistency of R. Thus no such set as X can exist, so * is

not r.e. quasi-conservative.

In other words, a necessary condition for * to be r.e. quasi-conservative is that for all

formulas �0,...,�n�L �  and �0,...,�n�L, if _ �  �{a�i: i�n} and, for each i�n,

_ �  (a�i Y a�i) H a] then, for some i�n, _PC ¬�i. Of course, if * is prenormal and contains

the D axiom (requiring the agent to be consistent) then the condition that

_ �  (a�i Y a�i) H a] can be simplified to the condition that _ �  ¬a(�i Y �i).

Open problem: Is the necessary condition for r.e. quasi-conservativeness in Theorem 3 (or

some natural generalization of it) also sufficient?

Observation: The proof of Theorem 3 uses significantly more recursion theory than does the

proof of Proposition 2, which relies only on the existence of an r.e. set whose complement is

not r.e. Samson Abramsky observed (informal communication) that the proof of Proposition 2

would generalize to a setting in which r.e. sets were replaced by open sets in a suitable

topology (in which not all open sets have open complements). It would be interesting to see

whether a generalization along such lines yielded a smoother theory. One might then seek an

intuitive interpretation of the topology.



18

To see that Proposition 2 is a special case of Theorem 3, put n=1, �0 = c¬p, �1 = cp,

�0 = p and �1 = ¬p. Now _S5 ac¬p Z acp; _S5 (ac¬p Y ap) H a] because _S5 ap H aap

and S5 is normal; likewise _S5 (acp Y a¬p) H a]; finally, neither _S5 p nor _S5 ¬p. These

features of S5 follow easily from the fact that it is a consistent normal extension of K4G1, the

smallest normal logic * including both 4 and G1 (ca� H ac�). Since the inconsistent logic

is certainly not r.e. quasi-conservative, we have this generalization of Proposition 2:

Corollary 4. No normal extension of KG14 is r.e. quasi-conservative.

We can use Corollary 4 to show several familiar weakenings of S5 not to be r.e. quasi-

conservative. G1 corresponds to the condition that accessibility be convergent, in the sense

that if x and y are both accessible from w, then some world z is accessible from both x and y.

Informally, G1 says that agents either cognize that they do not cognize � or cognizes that they

do not cognize ¬�. Any normal logic satisfying E also satisfies G1, so Corollary 4 implies in

particular the failure of r.e. quasi-conservativeness for the logics K4E and KD4E. Those two

logics are the natural analogues for belief of S5 as a logic for knowledge, since they retain

positive and negative introspection while dropping truthfulness altogether (K4E) or

weakening it to consistency (KD4E). Thus they are often used as logics of belief. But positive

and negative introspection together violate the computational constraint in a normal logic

even in the absence of truthfulness. Thus, in a generalized context, K4E or KD4E impose

unacceptably strong computational constraints as logics of belief, just as S5 does as a logic of

knowledge.
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For more examples, consider the schemas B (� H ac�) and D1 (a(a� H �) Z a(a� H

�)). B corresponds to the condition that accessibility be symmetric, D1 to the condition that

accessibility be connected, in the sense that if x and y are both accessible from w, then either x

is accessible from y or y is accessible from x. Any normal logic satisfying B or D1 also

satisfies G1, so KB4 and KD14 are not r.e. quasi-conservative. A fortiori, the same holds if

one requires the agent to be consistent or truthful by adding D or T respectively. Thus KD4E,

KDG14, KTG14 (= S4.2), KDD14 and KTD14 (= S4.3) are also not r.e. quasi-conservative. All

these are sublogics of S5; we shall need to weaken S5 considerably to find an r.e. quasi-

conservative logic.

Theorem 3 is also applicable to logics without positive introspection. We can use T

rather than 4 to derive (ac¬p Y ap) H a], so:

Corollary 5. No normal extension of KTG1 is r.e. quasi-conservative.

Again, consider Altn (�{a(�{pj: j<i} H pi): i�n}), e.g. Alt2 is

ap0 Z a(p0 H p1) Z a((p0 Y p1) H p2). Altn corresponds to the condition that from each world

at most n worlds be accessible; informally, the agent rules out all but n specific possibilities.

Setting �i = �{pj: j<i} H pi and �i = ¬�i in Theorem 3 gives:

Corollary 6. For any n, no r.e. quasi-conservative prenormal modal logic contains Altn.

An epistemic logic which imposes an upper bound on how many possibilities the agent can
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countenance thereby excludes the agent from having some consistent r.e. theories about the

black box.

5. SOME R.E. CONSERVATIVE LOGICS

Since every modal logic with an r.e. [quasi-] conservative extension is itself r.e. [quasi-]

conservative, an efficient strategy is to seek very strong r.e. [quasi-] conservative logics, even

if they are implausibly strong for most epistemic applications, because we can note that the

weaker and perhaps more plausible logics which they extend will also be r.e.[quasi-]

conservative.

A large class of r.e. conservative logics arises as follows. Let * be any epistemic

logic. The agent might cognize each theorem of *. Moreover, an epistemic logic ** may

imply this, in that _ � * a� whenever _ �  �. * and ** may be distinct, even incompatible. For

example, let Ver be the smallest normal modal logic containing a]. Interpreted

epistemically, Ver implies that the agent is inconsistent; but Ver itself is consistent. An

epistemic theory consisting just of Ver falsely but consistently self-attributes inconsistency,

and an epistemic logic may report that the agent self-attributes inconsistency without itself

attributing inconsistency to the agent. Thus Ver* may contain aa] without a]. Similarly,

let Triv be the smallest normal modal logic containing all theorems of the form � � a�.

Interpreted epistemically, Triv implies that the agent cognizes that his beliefs contain all and

only truths; but Triv itself does not contain all and only truths (neither _Triv p nor _Triv ¬p).
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Thus Triv* may contain a(p � ap) without p � ap. To be more precise, for any modal logics

� and * let �a* be the smallest normal extension of � containing {a�: _ �  �}. We will

prove that if * is consistent and normal then Ka* is r.e. conservative. Ka* is an epistemic

logic for theorizing about theories that incorporate the epistemic logic *. R.e.

conservativeness implies no constraint on what epistemic logic the agent uses beyond

consistency (if * is inconsistent, then Ka* contains Alt0 and so is not even r.e. quasi-

conservative). In particular, the smallest normal logic K itself is r.e. conservative. Moreover,

if * is consistent and normal, then K4a* is r.e. conservative; that is, we can add positive

introspection. In particular, K4 itself is r.e. conservative. We prove this by proving that

KaVer and KaTriv are r.e. conservative. Since KaVer and KaTriv contain aa] and

a(p � ap) respectively, they are too strong to be useful epistemic logics themselves, but

equally they are strong enough to contain many other logics of epistemic interest, all of which

must also be r.e. conservative. By contrast, Ver and Triv are not themselves even r.e. quasi-

conservative, for _Ver Alt0 and _Triv Alt1.

For future reference, call a mapping 1 from L �  into L �  respectful if and only if 1p = p

for all propositional variables p, 1] = ] and 1(� H �) = 1� H 1� for all formulas � and �.

Lemma 7. KaTriv is r.e. conservative.

Proof: Let R be an r.e. theory in L. Let  and � be respectful mappings from L �  to L such that

a� = �; �a� = \ if R _PC � and �a� = ] otherwise for all formulas �. (i) Axiomatize

Triv with all truth-functional tautologies and formulas of the form � � a� as the axioms and

MP as the only rule of inference (schema K and rule RN are easily derivable). By an easy
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induction on the length of proofs, _Triv � only if _PC �. (ii) Axiomatize KaTriv with all truth-

functional tautologies and formulas of the forms a(� H �) H (a� H a�) and a� whenever

_Triv � as the axioms and MP as the only rule of inference (RN is a derived rule; its conclusion

is always an axiom because the logic so defined is a sublogic of Triv). We show by induction

on the length of proofs that _K � Triv � only if _PC ��. Basis: If _PC �, _PC ��. If �a(� H �) = \

and �a� = \ then R _PC � H � and R _PC �, so R _PC �, so �a� = \, so

R _PC �(a(� H �) H (a� H a�)); otherwise �a(� H �) = ] or �a� = ] and again

R _PC �(a(� H �) H (a� H a�)). If _Triv � then _PC � by (i), so R _PC �, so �a� = \, so

_PC �a�. Induction step: trivial. (iii) Put Y = {a��L � : R _PC �} F {¬a��L  : not R _PC �}.

Y is KaTriv-consistent, for if Y0IY is finite and _K  Triv �Y0 H ], then _PC �(�Y0 H ]) by

(ii), i.e. _PC �{��: ��Y0} H ], which is impossible since {��: ��Y}I{\,¬]}. Let X be a

maximal KaTriv-consistent extension of Y. By definition of Y, a-1X = {�: R _PC �}, which

is r.e. because R is r.e. and  is recursive (although � need not be). If ��L, � = �, so a��X

if and only if R _PC �, i.e. if and only if ��R because R is a theory; thus L�a-1X = R. Hence

KaTriv is r.e. conservative.

Lemma 8. KaVer is r.e. conservative.

Proof: Like Lemma 7, but in place of  use a respectful mapping � such that �a� = \.

A notable sublogic of KaVer is GL, the smallest normal modal logic including

a(a� H �) H a�. Thus a corollary of Lemma 8 is that GL is r.e. conservative. GL is in a

precise sense the logic of what is provable in Peano arithmetic (PA) about provability in PA
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(Boolos 1993 has exposition and references). More generally, if R is an 7-consistent r.e.

extension of PA, then GL is the logic of what is provable in R about provability in R. Since a

Turing machine’s theory of arithmetic is presumably at best an 7-consistent r.e. extension of

PA, GL is therefore a salient epistemic logic for Turing machines, and its r.e.

conservativeness is not surprising.

Caution: We must be careful in our informal renderings of results about provability

logic. A provability operator creates an intensional context within which the substitution of

coextensive but not provably coextensive descriptions can alter the truth-value of the whole

sentence; this point applies in particular to descriptions of agents or their theories. On a

provability interpretation of a, occurrences of a within the scope of other occurrences of a

in effect involve just such occurrences of descriptions of agents or their theories in an

intensional context, so which logic is validated can depend on the manner in which a given

agent or theory is described. The validity of GL as an epistemic logic is relative to a special

kind of descriptive self-presentation of the theory T in the interpretation of a, by a coding of

its axioms and rules of inference. GL is not valid relative to some extensionally equivalent

but intensionally distinct interpretations of a, e.g. the indexical reading ‘I can prove that’ as

uttered by an epistemic subject with the computational capacity of a Turing machine (Shin

and Williamson 1994, Williamson 1996 and 1998).

Proposition 9. If * is a consistent normal modal logic, Ka* and K4a* are r.e. conservative.

Proof: By Makinson [1971], either *ITriv or *IVer. Hence either Ka*IKaTriv or

Ka*IKaVer. But schema 4 is easily derivable in both KaTriv and KaVer, so
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K4a*IKaTriv or K4a*IKaVer. By Lemmas 7 and 8, KaTriv and KaVer are r.e.

conservative, so K4a* is.

All the logics salient in this paper are decidable, and therefore r.e., but we should note

that an epistemic logic need not be r.e. to be r.e. conservative:

Corollary 10. Not all r.e. conservative normal modal logics are r.e.

Proof: (i) We show that for any normal modal logic *, _ !  � if and only if _K " !  a�. Only the

= direction needs proving. Axiomatize Ka* with all truth-functional tautologies and

formulas of the forms a(� H �) H (a� H a�) and a� whenever _ !  � as the axioms and MP as

the only rule of inference (RN is a derived rule; its conclusion is always an axiom because the

logic so defined is a sublogic of *). Let � be a respectful mapping from L #  to L #  such that

�a� = � for all formulas � (� is distinct from  in the proof of Lemma 7 since �aap = ap

whereas aap = p). By induction on the length of proofs, _K # $  � only if _ $  ��. Hence

_K # $  a� only if _ $  �. (ii) By (i), for any normal modal logics *1 and *2, Ka*1 = Ka*2 if and

only if *1 = *2. But there are continuum many consistent normal modal logics (Blok 1980 has

much more on these lines). Hence there are continuum many corresponding logics of the form

Ka*; all are r.e. conservative by Proposition 9. Since only countably many modal logics are

r.e., some of them are not r.e.

One limitation of Proposition 9 is that Ka* and K4a* never contain the consistency

schema D. In a sense this limitation is easily repaired. For any modal logic *, let *[D] be the
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smallest extension of * containing D; thus _ % [D] � just in case _ %  c\ H �.

Proposition 11. For any r.e. conservative modal logic *, *[D] is r.e. quasi-conservative.

Proof: For any consistent theory R, any maximal *-consistent set X such that L�a-1X = R is

*[D]-consistent because c\�X.

Corollary 12. If * is a consistent normal modal logic, (Ka*)[D] and (K4a*)[D] are r.e.

quasi-conservative.

Proof: By Propositions 9 and 11.

Although *[D] is always prenormal, it may not be normal, even if * is normal; sometimes

not _ % [D] ac\. But we can also consider epistemic interpretations of normal logics with the D

schema, e.g. KD and KD4. Such logics contain ac\; they require agents to cognize their own

consistency. By Gödel’s second incompleteness theorem, this condition cannot be met

relative to a Gödelian manner of representing the theory in itself; no consistent normal

extension of the provability logic GL contains D. But ac\ is true on other epistemic

interpretations; for example, we know that our knowledge (as opposed to our beliefs) does not

imply a contradiction. Since GLIKaVer, Proposition 9 does not generalize to the r.e. quasi-

conservativeness of KDa*. But we can generalize Lemma 7 thus:

Proposition 13. If *ITriv then KDa* and KD4a* are r.e. quasi-conservative.

Proof: It suffices to prove that KDaTriv (=KD4aTriv) is r.e. quasi-conservative. Argue as
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for Lemma 7, adding c\ as an axiom for KDaTriv and noting that if R is consistent then

�a¬\ = ], so _PC �c\.

In particular, KD and KD4 are themselves r.e. quasi-conservative; they are our first examples

of r.e. quasi-conservative logics which are not r.e. conservative.

We now return to systems with the T schema. Since T implies D, only r.e. quasi-

conservativeness is at issue. That constraint was motivated by the idea that any consistent r.e.

theory in the non-modal language might be exactly the restriction of the agent’s total r.e.

theory to the non-modal language. On many epistemic interpretations, it is in the spirit of this

idea that the agent’s total theory might be true in the envisaged situation (for example, the

agent’s theory about the black box might be true, having been derived from a reliable

witness). To require an epistemic logic * to leave open these possibilities is to require that

*[T] be r.e. quasi-conservative, where *[T] is the smallest extension of * containing all

instances of T. As with *[D], *[T] need not be normal even when * is; sometimes not

_ & [T] a(a� H �) (Williamson 1998: 113-116 discusses logics of the form *[T]). Agents may

not cognize that they cognize only truths. Nevertheless, particularly when a is interpreted in

terms of knowledge, one might want an epistemic logic such as KT containing a(a� H �).

Proposition 11 and Corollary 12 have no analogues for T in place of D. For any modal

logic *, if _ &  � then _(K ' & )[T] a�, but _(K ' & )[T] a� H �, so _(K ' & )[T] �; thus (Ka*)[T] extends *

and is r.e. quasi-conservative only if * is. Similarly, Proposition 13 would be false with T in

place of D (counterexample: * = S5). Therefore, needing a different approach, we start with

the system GL[T]. GL[T] has intrinsic interest, for it is the provability logic GLS introduced
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by Solovay and shown by him to be the logic of what is true (rather than provable) about

provability in PA; more generally, it is the logic of what is true about provability in an 7-

consistent r.e. extension of PA. GLS is therefore a salient epistemic logic for Turing

machines, and its r.e. quasi-conservativeness is not surprising. Although GLS is not normal

and has no consistent normal extension, we can use its r.e. quasi-conservativeness to establish

that of normal logics containing T.

Proposition 14. GLS is r.e. quasi-conservative.

Proof: Let R be an consistent r.e. theory in L. Axiomatize a theory R+ in L (  with all members

of R, truth-functional tautologies and formulas of the forms a(� H �) H (a� H a�) and

a(a� H �) H a� as the axioms and MP and RN as the rules of inference. Since R is r.e., so is

R+. Let � be the respectful mapping such that �a� = \ for all formulas �. By an easy

induction on the length of proofs, if _R+ � then R _PC ��. But if ��L then �� = �, so _R+ �

only if R _PC �, i.e. ��R; conversely, if ��R then _R+ �; thus L�R+ = R. Let YIL be a

maximal consistent extension of R. Define a set XIL (  inductively: pi�X @ pi�Y; ]ÕX; � H �

�X @ �ÕX or ��X; a��X  @ _R+ �. For ��L ) , either ��X or ¬��X. We show by induction

on the length of proofs that if _R+ � then ��X. Basis: If ��R then ��YIX. If a(� H �)�X and

a��X then _R+ � H � and _R+ �, so _R+ �, so a��X; thus a(� H �) H (a� H a�) �X. If

a(a� H �)�X then _R+ a� H �, so _R+ a(a� H �) because R+ is closed under RN; but

_R+ a(a� H �) H a�, so _R+ a�, so _R+ �, so a��X; thus a(a� H �) H a� �X. Induction

step: Trivial. Now axiomatize GLS with all theorems of GL and formulas of the form a� H �

as the axioms and MP as the only rule of inference. We show by induction on the length of
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proofs that, for all formulas �, if _GLS � then ��X. Basis: If _GL � then _R+ � because GLIR+,

so ��X by the previous induction. If a��X then _R+ �, so again ��X; thus a� H � �X.

Induction step: Trivial. Hence GLSIX, so X is maximal GLS-consistent. Now

L�a-1X = L�R+ = R and a-1X = R+ is r.e. Thus GLS is r.e. quasi-conservative.

We can extend Proposition 14 to another system of interest in relation to provability

logic. Grz is the smallest normal modal logic containing all formulas of the form  a(a(� H

a�) H �) H �. Grz turns out to be in a precise sense the logic of what is both provable and

true in PA (Boolos 1993: 155-161 has all the facts about Grz used here). Grz is intimately

related to GLS in a way which allows us to extend the r.e. quasi-conservativeness of GLS to

Grz:

Proposition 15. Grz is r.e. quasi-conservative.

Proof: Let R be a consistent theory in L. By Proposition 14, for some maximal GLS-

consistent X, L�a-1X = R and a-1X is r.e. Let - be the respectful mapping from L *  to L *  such

that -a� = a-� Y -� for all formulas �. Put --1X = {�: -��X}. Now GrzI--1X, for _Grz � if

and only if _GLS -� (Boolos [1993]: 156), so -��X since X is maximal GLS-consistent, so

��--1X. Since X is maximal GLS-consistent, --1X is maximal Grz-consistent. Suppose ��L,

so -� = �, so -a� = a� Y �; if a��X then ��X because _GLS a� H �, so -a��X, so

a��--1X; conversely, if a��--1X then -a��X, so a��X. Thus L�a-1--1X = L�a-1X = R.

Moreover, a-1--1X is r.e. because X is r.e. and - is recursive. Thus Grz is r.e. quasi-

conservative.
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Grz is not plausible as the logic of other epistemic applications. It is not a sublogic of S5 and

_Grz ¬a(cp Y c¬p), which in effect forbids agents to cognize that they do not cognize

whether p is true. Yet you can know that what you know neither entails that the coin came

down heads nor entails that it did not. However, since Grz extends the epistemically more

plausible S4, the smallest normal modal logic including both the T and 4 schemas, its r.e.

quasi-conservativeness entails that of S4. Truthfulness and positive introspection are together

consistent with r.e. quasi-conservativeness.

Corollary 16. (Compare Shin and Williamson 1994 Proposition 4.) S4 is r.e. quasi-

conservative.

Since S4 is r.e. quasi-conservative while S5, its extension by E, is not, and K4 is r.e.

conservative while K4E is not, one might be tempted to blame E for the failure to satisfy the

constraints, and to suppose that no normal logics with E is r.e. quasi-conservative. That would

be a mistake; the next two propositions show that E is harmless when not combined with 4.

Proposition 17. KDE is r.e. quasi-conservative.

Proof. Let R be a consistent r.e. theory in L. Let µ and � be respectful mappings from L +  to L

such that for all formulas �, �a� = \ if _PC �� and �a� = ] otherwise; µa� = \ if R _PC ��

and µa� = ] otherwise. Axiomatize KDE with all truth-functional tautologies and formulas

of the forms a(� H �) H (a� H a�), ¬a] and ¬a� H a¬a� as the axioms and MP and RN

as the rules of inference. We show by induction on the length of proofs that for all formulas
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�, _KDE � only if _PC �� and _PC µ�. Basis: If R _PC ��, then µa� = \, so µ(¬a� H a¬a�) =

¬\ H µa¬a�; if not, then not _PC ��, so �a� = ], so �¬a� = ¬], so R _PC �¬a�, so µa¬a�

= \, so µ(¬a� H a¬a�) = ¬] H \; either way, _PC µ(¬a� H a¬a�). The rest of the induction

is by now routine. The rest of the proof is like that of Lemma 7, with � and µ in place of 

and � respectively.

Corollary 18. KE is r.e. conservative.

Proof: KE is r.e. quasi-conservative by Proposition 17. Since not _KE c\, KE is r.e.

conservative by Proposition 1.

Although both positive and negative introspection are individually consistent with r.e.

[quasi-] conservativeness, their conjunction is not. Part of the explanation is this: without

positive introspection, an r.e. but non-recursive theory R can count as satisfying negative

introspection by falsely equating the agent’s theory with a recursive subtheory of R; the idea

behind the clause for �a� in the proof of Proposition 17 is to use PC as such a subtheory.

That R satisfies negative introspection by making false equations is crucial, for KE[T] is S5

itself. Although both negative introspection and truthfulness are individually consistent with

r.e. [quasi-] conservativeness, their conjunction is not.

6. RELATED NON-COMPUTATIONAL CONSTRAINTS
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Although r.e. conservativeness and r.e. quasi-conservativeness are defined in computational

terms, something remains when the computational element is eliminated. For given any

[consistent] theory R in L, r.e. or not, we might require an epistemic logic to leave open the

possibility that R is exactly the restriction of the agent’s theory to L. On this view, an

epistemic logic should impose no constraint beyond consistency on the agent’s non-Epistemic

theorizing. Thus we define a modal logic * to be conservative if and only if for every theory

R in L, L�a-1X = R for some maximal *-consistent set X. * is quasi-conservative if and only

if for every consistent theory R in L, L�a-1X = R for some maximal *-consistent set X.

Equivalently, * is [quasi-] conservative if and only if for every [consistent] theory R in L,

{a�: ��R}F{¬a�: ��L-R} is *-consistent. We can assess how far r.e. conservativeness and

r.e. quasi-conservativeness are specifically computational constraints by comparing them with

conservativeness and quasi-conservativeness respectively.

Theorem 19. A prenormal modal logic * is quasi-conservative if and only if for no n _ ,  Altn.

Proof: (<) Suppose that _ ,  Altn. Put X = {a�: ��PC}F{¬a�: ��L-PC}. For all i�n, not

_PC �{pj: j<i} H pi, so ¬a(�{pj: j<i} H pi) �X. Hence X _ ,  ¬Altn, so X _ ,  ]. Since PC is a

theory in L, * is not quasi-conservative. (=) Suppose that R is a consistent theory in L and

{a�: ��R}F{¬a�: ��L-R} is not *-consistent. Thus for some �0,...,�m�R and �0,...,�n�L-R

(such �i exist because R is consistent), _ ,  �{a�i: i�m} H �{a�i: i�n}. Let i�n; since

�0,...,�m�R, �i�L-R and R is a theory, it follows that for some valuation vi of L onto {0,1}

(where vi(])=] and vi(�1 H �2)=1 just in case vi(�1)�vi(�2)), vi(�j)=1 for all j�m and vi(�i)=0.

Put vn+1=v0. Set i = �{pj: j<i} Y ¬pi for i�n and n+1 = �{pj: j�n}. Let ) be the substitution
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such that for all j, )pj = �{i: vi(pj)=1, i�n+1}. Since * is closed under US,

_ -  �{a)�i: i�m} H �{a)�i: i�n}. We can prove by induction on the complexity of � that

for all ��L and i�n+1, if vi(�)=1 then _PC i H )� and if vi(�)=0 then _PC i H ¬)�. Basis:

Immediate by definition of ), for _PC i H ¬k whenever igk. Induction step: Routine. Now for

i�n+1 and j�m,  vi(�j)=1, so _PC i H )�j; since _PC �{i: i�n+1}, _PC )�j, so _PC \ H )�j.

Hence by prenormality _ -  a\ H a)�j and so _ -  a)�j. Thus _ -  �{a)�i: i�n}. Moreover, for

each i�n, vi(�i)=0, so _PC i H ¬)�i, so _PC )�i H (�{pj: j<i} H pi), so

_ -  a)�i H a(�{pj: j<i} H pi). Thus _ -  Altn.

Proposition 20. A prenormal modal logic * is conservative if and only if * is quasi-

conservative and not _ -  c\.

Proof: Like Proposition 1 with ‘r.e.’ omitted.

Thus S5 is a quasi-conservative normal modal logic which is not r.e. quasi-conservative; K4E

is a conservative normal modal logic which is not r.e. conservative. Most of the examples

given above of logics which are not r.e. [quasi-] conservative are [quasi-] conservative. It is

the distinctively computational requirements of r.e. quasi-conservativeness and r.e.

conservativeness which those logics fail to meet.

Corollary 21. Every r.e. quasi-conservative prenormal modal logic is quasi-conservative;

every r.e. conservative prenormal modal logic is conservative.

Proof: From Proposition 1, Corollary 6, Theorem 19 and Proposition 20.
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Although quasi-conservativeness exceeds r.e. quasi-conservativeness in requiring an

epistemic logic to leave open the possibility that the restriction of the subject’s theory to the

language L is any given non-r.e. theory in L, this requirement is met by any epistemic logic

which leaves open the corresponding possibility for every consistent r.e. theory in L.

7. CONCLUSION

Our investigation has uncovered part of a complex picture. The line between those modal

logics weak enough to be r.e. conservative or r.e. quasi-conservative and those that are too

strong appears not to coincide with any more familiar distinction between classes of modal

logics, although a solution to the problem left open in section 4 about the converse of

Theorem 3 might bring clarification. What we have seen is that some decidable modal logics

in general use as logics of knowledge (such as S5) or belief (such as KD45 and K45) when

applied in generalized settings impose constraints on epistemic agents that require them to

exceed every Turing machine in computational power. For many interpretations of epistemic

logic, such a constraint is unacceptably strong.

The problem is not the same as the issue of logical omniscience, since many epistemic

logics (such as S4 and various provability logics) do not impose the unacceptably strong

constraints, although they do impose logical omniscience. Interpretations that finesse logical

omniscience by building it into the definition of the propositional attitude that interprets the
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symbol a do not thereby finesse the computational issue that we have been investigating.

Nevertheless, the two questions are related, because the deductive closure of a recursively

axiomatised theory is what makes its theorems computationally hard to survey. In particular,

it can be computationally hard to check for non-theoremhood, which is what negative

introspection and similar axioms require. In fact, negative introspection by itself turned out

not to impose unacceptable computational requirements (Corollary 18), but its combination

with independently more plausible axioms does so. Perhaps the issues raised in this paper will

provide a more fruitful context in which to discuss some of the questions raised by the debate

on logical omniscience and bounded rationality.

The results proved in the paper also suggest that more consideration should be given

to the epistemic use of weaker modal logics that are r.e. conservative or quasi-conservative.

The plausibility of correspondingly weaker axioms must be evaluated under suitable

epistemic interpretations. Weaker epistemic logics present a more complex picture of the

knowing subject, but also a more nuanced one, because they make distinctions that stronger

logics erase. We have seen that the more nuanced picture is needed to express the limits in

general cognition of creatures whose powers do not exceed those of every Turing machine. 
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