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Abstract

This paper is concerned with formal solutions to the lottery paradox on which

high probability defeasibly warrants acceptance. It considers some recently pro-

posed solutions of this type and presents an argument showing that these so-

lutions are trivial in that they boil down to the claim that perfect probability is

sufficient for rational acceptability. The argument is then generalized, showing

that a broad class of similar solutions faces the same problem.

Over the past decades, there has been a steadily growing interest in utilizing prob-

ability theory to elucidate, or even analyze, concepts central to traditional episte-

mology. Special attention in this regard has been given to the notion of rational

acceptability. Many have found the following thesis at least prima facie a promising

starting point for a probabilistic elucidation of that notion:

Sufficiency Thesis (ST) A proposition ϕ is rationally acceptable if Pr(ϕ) > t,

where Pr is a probability distribution over propositions and t is a threshold value

close to 1.1 Another plausible constraint is that when some propositions are ratio-

nally acceptable, so is their conjunction:

Conjunction Principle (CP) If each of the propositions ϕ and ψ is rationally accept-

able, so is ϕ ∧ψ.

From CP we can easily derive its generalization to any finite number of conjuncts,

by mathematical induction.

Of course, one can think of readings of ‘rationally acceptable’ on which CP fails.

Suppose that we have generalized the consequence relation beyond deduction to

include the results of good abductive, inductive, statistical and probabilistic reason-

ing too. Call the generalized relation between premise sets and conclusions ‘general

1We think of the Pr-function as representing the probability of the various propositions on the

relevant evidence. We are neutral as to whether such evidential probabilities should be conceived as

the degrees of belief of a rational agent or more objectively, for example in the manner of Williamson

([2000], pp. 209–37). In any case, we assume that they satisfy the standard axioms of probability theory.
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consequence’. Thus a deductive consequence of a premise set is also a general con-

sequence of that set, but a general consequence of a premise set need not be a de-

ductive consequence of the set. A proposition is generally consistent with a premise

set if and only if its negation is not a general consequence of that set. We assume a

weak form of transitivity for general consequence: if each proposition in the set ∆

is a general consequence of the premise set Γ , then any general consequence of the

combined premise set Γ ∪ ∆ is already a general consequence of Γ itself.2 The ra-

tionale for this principle is to make general consequence accumulative, in the sense

that we can freely use any general consequences that we have already drawn from

a premise set in drawing further general consequences from that set, for otherwise

what use are chains of non-deductive reasoning? Now stipulate that a proposition

is rationally acceptable in given circumstances if and only if it is generally consis-

tent with the evidence available in those circumstances. Then we can expect CP to

fail. For in virtually all circumstances the available evidence will leave some propo-

sition ϕ undecided, in the sense that neither ϕ nor ¬ϕ is a general consequence of

the evidence available. By our stipulation, each ofϕ and ¬ϕ is rationally acceptable

in those circumstances, because it is generally consistent with the evidence. But

their conjunction ϕ ∧ ¬ϕ is not rationally acceptable, for its tautological negation

2Full transitivity would require that if each proposition in a set ∆ is a general consequence of a set Γ ,

then any general consequence of ∆ is a general consequence of Γ . Our weak transitivity principle is the

special case of this in which for ‘∆’ we substitute ‘Γ ∪ ∆’ (note that every member of Γ is a deductive

consequence and therefore a general consequence of Γ ). We do not assume full transitivity for general

consequence because it makes general transitivity monotonic, in the sense that any general conse-

quence of a set Γ would also count as a general consequence of Γ ∪∆, no matter what extra premises ∆

contains, whereas most forms of non-deductive reasoning are non-monotonic: for example, the best

explanation of some evidence may be inconsistent with an enlarged evidence set. Full transitivity im-

plies monotonicity because each proposition in Γ is a deductive consequence and therefore a general

consequence of Γ ∪ ∆, so by full transitivity any general consequence of Γ is a general consequence

of Γ ∪ ∆ too. By contrast, the weak transitivity principle in the text does not imply monotonicity. To

show this, we give an artificial interpretation of ‘general consequence’ on which it properly extends

deductive consequence and weak transitivity holds but monotonicity does not. Consider a language

of propositional logic with only finitely many atomic letters. Thus there are only finitely many models

(assignments of truth-values to atomic letters). Assign each model a real number as its ‘value’; different

models may be assigned the same value, but at least one model must be assigned a higher value than

some other. The ‘best’ models in a set are those assigned the highest ‘value’ of any in the set; thus

any nonempty set of models has at least one best member. Interpret ‘ϕ is a general consequence of Γ ’

to mean that ϕ is true in each of the best members of the set of models in which every member of Γ

is true (if Γ is empty, ϕ is a vacuous general consequence of Γ ). In brief, ϕ is a general consequence

of Γ iff every best model of Γ is a model of ϕ. On this interpretation, general consequence extends

deductive consequence, for ifϕ is a deductive consequence of Γ , then every model of Γ is a model ofϕ;

a fortiori, every best model of Γ is a model of ϕ. Moreover, weak transitivity holds. For suppose that

every member of ∆ is a general consequence of Γ , and thatϕ is a general consequence of Γ∪∆. LetM be

a best model of Γ , soM is a model of ∆. ThusM is a model of Γ ∪∆. IfM were not a best model of Γ ∪∆,

another model M* of Γ ∪ ∆ would be better; but M* would be a model of Γ , so M would not be a best

model of Γ . Hence M is a best model of Γ ∪∆. Since ϕ is a general consequence of Γ ∪∆, M is a model

of ϕ. Thus every best model of Γ is a model of ϕ, so ϕ is a general consequence of Γ . Nevertheless,

we can show that monotonicity fails, as follows. For each model M , let α(M) be the conjunction of

the atomic letters true in M and the negations of the atomic letters false in M ; thus α(M) is true in M

and in no other model. Let β be the disjunction of α(M) for each best model M (best member of the

set of all models). Hence β is true in each best model and in no other. So β is a general consequence

of the null set. But β is no general consequence of {¬β}, for ¬β has some models (by hypothesis, not

every model takes the maximum value). Therefore general consequence is non-monotonic. Since full

transitivity implies monotonicity, full transitivity also fails on this interpretation.
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¬(ϕ∧¬ϕ) is a deductive consequence and therefore a general consequence of any

evidence.

However, we could have made the alternative and perhaps more natural stipula-

tion that a proposition is rationally acceptable in given circumstances if and only if

it is a general consequence of the evidence available in those circumstances. Then

CP holds. For suppose that each of the propositionsϕ andψ is rationally acceptable

in given circumstances. Let E be the evidence available in those circumstances. Of

course ϕ ∧ψ is a deductive consequence, and therefore a general consequence, of

E ∪ {ϕ,ψ}. But, by our new stipulation, each of ϕ and ψ is a general consequence

of E. Hence, by the accumulation principle, ϕ∧ψ is already a general consequence

of E. Therefore, by the new stipulation again, ϕ ∧ ψ is rationally acceptable in

the given circumstances, as CP requires. Note that ST still sounds plausible on this

understanding of ‘rationally acceptable’. For one might think that if the probability

ofϕ on the evidence available in given circumstances exceeds a high enough thresh-

old, thenϕ is beyond reasonable doubt in those circumstances, and so should count

as a general consequence of the evidence, in which case it is rationally acceptable by

the new stipulation. For example, perhaps it is a general consequence of our present

evidence that the earth has existed for more than ten thousand years, because that

proposition is so probable on that evidence. In what follows, we do not assume

this or any other particular account of rational acceptability, but instead rely on the

reader’s informal understanding of the notion. We hope that the preceding remarks

indicate the attractions of ST and the structural difficulty of giving up CP.

It has long been known, however, that ST, when combined with CP, leads to the

untoward conclusion that ⊥, the inconsistent proposition, can be rationally accept-

able. A simple argument for this goes as follows. Consider an n-ticket lottery known

to be fair and to have exactly one winner, and with 1− 1/n > t. Given ST, all propo-

sitions in the set

LOT = {〈Ticket #i will lose〉 | 1 à i à n}

are rationally acceptable.3 The same is true of the proposition that some ticket will

win, of course, for that is assumed to be known and hence to have probability 1.

But the conjunction of the latter proposition and all the members of LOT forms an

outright contradiction, which should now, given CP, be rationally acceptable, too.4

The foregoing argument is due to Kyburg ([1961]), and since its first presentation

has commonly been known as ‘the lottery paradox’. Kyburg’s own response to it,

which is now almost generally regarded as being too drastic, was to abandon CP. A

currently more popular type of response emanates from the (correct) idea that, by

itself, the lottery paradox does not show ST to be completely off the mark; some-

thing in the vicinity of that thesis might still be tenable. Virtually all proposals that

start from this idea let high probability defeasibly warrant acceptance, and can be

schematically represented as follows:

(1) ϕ is rationally acceptable if Pr(ϕ) > t, unless defeater D holds of ϕ.

3Throughout the paper, a sentence surrounded by angle brackets refers to the sentence’s proposi-

tional content.
4In terms of the understanding of rational acceptability as the property of being a general conse-

quence of the evidence, the upshot of the argument is that if general consequence satisfies ST and CP,

it violates the following consistency constraint: a contradiction is a general consequence of a set only

if it is a deductive consequence of that set.
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Another general feature of these proposals is that they aim to define a defeater that

applies as selectively as possible to ‘lottery propositions’, such as the elements of

LOT; many or even all other propositions that have a probability above the thresh-

old are supposed still to qualify as rationally acceptable on account of their high

probability.

The present paper will be concerned with proposals of this type, and only with

those that are formal in the sense that they define the defeater in terms that are

probabilistic or broadly logical. In particular it argues that such solutions either are

trivial in that they boil down to the claim that probability 1 is sufficient for rational

acceptability or still have as a consequence that ⊥ or some almost equally discred-

itable proposition is rationally acceptable (even if perhaps they solve the lottery

paradox in the narrower sense that they succeed in blocking Kyburg’s argument).

To underline the significance of this result, despite its being restricted to formal

solutions, let us first say that in analytic philosophy the prima facie attractiveness

of a formal approach should hardly need mentioning. Moreover, since differences in

philosophers’ understanding of the notion of rational acceptability are sometimes

quite subtle and hard to detect, and therefore harbour some danger of leading to

equivocation and spurious debate, the use of relatively strong analytic tools seems

particularly called for in the present debate. Also, since it is easier to implement

notions that are formal in the indicated sense, those working in the field of Artificial

Intelligence, or at any rate those agreeing with Pollock ([1995], p. xi) that ‘The im-

plementability of a theory of rationality is a necessary condition for its correctness’,

have an especially good reason for aspiring to formality here. For only a formal so-

lution to the lottery paradox can be embedded in (or perhaps even serve as a basis

for) a formal theory of rational acceptability.

1. An Argument Against Some Formal Solutions to the Lottery Paradox. In this

section we briefly review some recent formal proposals of what D in (1) should be

and show why they fail.

Call a set of propositions minimally inconsistent iff it is inconsistent and has

no proper subset that is inconsistent. Then, glossing over some details that are

inessential for present purposes, Pollock’s ([1995]) proposal for the defeater is

(2) being a member of a minimally inconsistent set of propositions each of

which has a probability above t.5

Another proposal, which can be distilled from Ryan ([1996]), is this:

(3) being a member of a set of propositions such that (i) each member of the

set has a probability above t, and (ii) the probability that every member

of the set is true is not above t.

And our final example reads as follows:

(4) being a member of a probabilistically self-undermining set,

5A detail still worth mentioning is that Pollock’s ([1995], p. 66) full proposal appeals to a notion of

projectibility. His general formal approach notwithstanding, however, this notion nowhere receives a

formal definition; it in effect is not properly defined at all but instead is said to be related to the notion

of the same name in Goodman’s ([1954]) work on induction (a notion that is notoriously vague).
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where a set of propositions Φ with cardinality |Φ| is defined to be probabilistically

self-undermining iff for all ϕ ∈ Φ : Pr(ϕ) > t and Pr(ϕ | Φ −ϕ) à t (where Φ −ϕ is

the conjunction of all members of Φ exceptϕ). This is essentially Douven’s ([2002])

proposal.

One readily verifies that substituting any of these proposals for the schematic

letterD in (1) yields a thesis on which none of the elements of LOT comes out as being

rationally acceptable. Consequently, CP can be combined with any of those theses

without engendering Kyburg’s paradox. As adumbrated, however, the challenge is

not just to define a defeater that applies to the members of LOT and to similar

propositions; the challenge is to define a defeater that does so selectively. And the

argument now to be presented shows that in this respect the above proposals do

quite badly.6

Let ϕ be any proposition such that t < Pr(ϕ) < 1. Then consider the set

Γ = {¬ϕ ∨ 〈Ticket #i of lottery L will lose〉 | 1 à i à n},

again with 1− 1/n > t. Now for all i:

(5) Pr(¬ϕ ∨ 〈Ticket #i will lose〉) > t,

for the second disjunct has a probability above the threshold and the probability of

a disjunction is never less than that of its most probable disjunct. But given that it

is part of the background knowledge that one of tickets #1–#n will win:

(6) Pr(ϕ | ¬ϕ ∨ 〈Ticket #1 will lose〉, . . . ,¬ϕ ∨ 〈Ticket #n will lose〉) = 0

and for all i:

(7) Pr(¬ϕ ∨ 〈Ticket #i will lose〉 | ¬ϕ ∨ 〈Ticket #1 will lose〉, . . . ,

¬ϕ ∨ 〈Ticket #i − 1 will lose〉,¬ϕ ∨ 〈Ticket #i + 1 will lose〉, . . . ,

¬ϕ ∨ 〈Ticket #n will lose〉,ϕ) = 0.

After all, given the background knowledge we are supposing, the set Γ ∪ {ϕ} is

inconsistent. Now note, first, that there must be a Γ ′ ⊆ Γ such that Γ ′ ∪ {ϕ} is

minimally inconsistent.7 Secondly, because Γ ∪ {ϕ} is inconsistent we know that at

least one of its members must be false, so that the probability that all members are

true equals 0 and thus is not above t. And finally note that from (5), (6) and (7) it

follows that Γ ∪ {ϕ} is a probabilistically self-undermining set. Thus, since ϕ was

an arbitrary proposition having a probability above the threshold without having

perfect probability, it appears that the combination of (1) with any of (2), (3) and (4)

constitutes a thesis that tells us no more than that propositions having probability 1

are rationally acceptable. That is to say, not only lottery propositions, but all propo-

sitions having non-perfect probability fail to qualify as rationally acceptable on the

theses resulting from the above proposals.

6Similar arguments are to be found in Korb ([1992]), Pollock ([1995], pp. 64–5) and Olin ([2003],

pp. 93–4).
7For since Γ ∪ {ϕ} is a finite inconsistent set, it has a minimally inconsistent subset ∆. But Γ itself

is consistent because every member of it is true if ϕ is false, which it can be since Pr(ϕ) < 1. Thus

ϕ ∈ ∆, so ∆ = Γ ′ ∪ {ϕ} for some Γ ′ ⊆ Γ .
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2. The Argument Generalized. The argument of the foregoing section may seem

to present the sort of problem that can be overcome by tinkering further with the

definition of the defeater. Evidently none of (2), (3) and (4) specifies a defeater that

is strict enough; given any of those definitions, too many things count as defeaters,

so that too few high probability propositions qualify as rationally acceptable. But it

might seem not too difficult to amend these definitions so that, to begin with, the

members of Γ ∪ {ϕ} do not have a defeater. To mention a very simple amendment

that already seems to do the trick, we could have Pollock’s solution read that a

proposition is rationally acceptable if it has high probability and besides is not an

element of a minimally inconsistent set of propositions each two members of which

are probabilistically negatively relevant to one another ; and similarly for the other

two proposals. That would certainly block the above argument, for nothing in it

excludes that, for instance,

Pr(ϕ | ¬ϕ ∨ 〈Ticket #14 will lose〉) > Pr(ϕ).

It thus could no longer be concluded that every proposition that is highly but not

perfectly probable is a member of a set of propositions each of which is defeated.

A first worry one may have about this and similar amendments is that they are

ad hoc. That worry aside, however, with such amendments there remains the nag-

ging doubt that there might be some presently overlooked ‘trivialization argument’

similar to the one propounded previously. As it turns out, such a doubt would be

justified, for the argument of section 1 generalizes: it can be proved that a large

class of proposals similar to the ones considered above fail for what is at root the

same reason for which those were seen to fail.8

To show this, we need some terminology.

Definition 2.1 Let W be a set of worlds, and think of propositions as subsets of W.

Further assume a probability distribution Pr on ℘(W). Then f is an automorphism of

〈W,Pr〉 iff f is a 1 : 1 function from ℘(W) onto itself that satisfies these conditions:

1. f (ϕ ∧ψ) = f (ϕ)∧ f (ψ);

2. f (¬ϕ) = ¬f (ϕ);

3. Pr(ϕ) = Pr
(

f (ϕ)
)

,

for all propositions ϕ,ψ ∈ ℘(W). a

A structural property of propositions is any property P such that for any propo-

sition ϕ and any automorphism of propositions f , ϕ has P iff f (ϕ) has P.9 An

aggregative property of propositions is any property P such that wheneverϕ has P

8Incidentally, the amendment just mentioned already comes to grief over the following argument:

Let ϕ again be any proposition such that t < Pr(ϕ) < 1. Suppose the same holds true of each of

ψ1, . . . , ψn, and let each element of the set {ϕ,ψ1, . . . ,ψn} be probabilistically independent of each

consistent truth-function of other elements of the set. Then, just provided n is large enough, it will

hold that Pr(ϕ ∧ ψ1 ∧ · · · ∧ ψn) < 1 − t and hence that Pr(¬ϕ ∨ ¬ψ1 ∨ · · · ∨ ¬ψn) > t. Then, if

we add the suggested clause about negative probabilistic relevance to the proposals of Pollock, Ryan

and Douven, all elements of {ϕ,ψ1, . . . ,ψn,¬ϕ∨¬ψ1∨· · ·∨¬ψn} are rationally acceptable on those

proposals. But since the set is inconsistent, it follows from CP that ⊥ is rationally acceptable.
9Note that strictly speaking a property is (or fails to be) structural only relative to a given probability

model. So we should really say that, for instance, a property P is 〈W,Pr〉-structural, for a certain

probability model 〈W,Pr〉. However, below context will always make it obvious relative to which model

a property is said or assumed to be structural, so that explicit reference to the model can be suppressed.
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and ψ has P, so has ϕ ∧ψ. Call a probability distribution Pr on a set W of worlds

equiprobable iff, for all w,w ′ ∈ W , Pr({w}) = Pr({w ′}). Because in most of what fol-

lows a finite probability space will be assumed, it is useful to note that if W is finite

and Pr an equiprobable distribution onW , then Pr(ϕ) = |ϕ| / |W |, for allϕ ∈ ℘(W);

similarly, Pr(ϕ | ψ) = |ϕ ∧ψ| / |ψ|, for all ϕ,ψ ∈ ℘(W). Finally, we define ϕ to be

inconsistent iff ϕ = ∅ = ⊥.

We then have the following:

Proposition 2.1 Let W be finite and let Pr be an equiprobable distribution on W. Fur-

ther, let P be structural, Q aggregative, and P sufficient for Q. Then if some proposi-

tion ϕ such that Pr(ϕ) < 1 has P, then ⊥ has Q.

Proof: Assume the conditions hold for properties P and Q, and that Pr(ϕ) < 1 and

ϕ has P. Since Pr(W) = 1 ≠ Pr(ϕ), W ≠ ϕ so for some w∗ ∈ W , w∗ 6∈ ϕ. Then

for all wi ∈ W , let πi be the permutation on W such that πi(wi) = w
∗, πi(w

∗) = wi
and πi(w) = w for all other w ∈ W. Define fi(ψ) := {πi(w) | w ∈ ψ} for all ψ ∈

℘(W). Each such fi automatically satisfies the first two conditions of Definition 2.1.

It satisfies the third because, given that W is finite and Pr equiprobable, any two

propositions with the same number of worlds have the same probability. Thus each

fi is an automorphism of propositions. Since, by assumption, ϕ has P, and P is

structural, P also holds of fi(ϕ), for all i : 1 à i à n. Since P is sufficient for Q,

every fi(ϕ) has Q, too. Note that for each i, wi 6∈ fi(ϕ). Let W = {w1, . . . , wn}. Then

f1(ϕ)∧ · · · ∧ fn(ϕ) = ⊥. Because Q is aggregative, Q holds of ⊥. a

Before showing how this result bears on solutions to the lottery paradox of the kind

considered in this paper, we first point to a simple corollary of the above result:

Corollary 2.2 Let Pr be an equiprobable distribution on a finite set W and let P be

both structural and aggregative. Then if some proposition ϕ such that Pr(ϕ) < 1

has P, then ⊥ has P.

Proof: From the proof of Proposition 2.1 by taking P and Q to be identical. a

Now note that to require rational acceptability to validate CP is to require, in the

above terminology, that it be an aggregative property. It then follows immediately

that if propositions with imperfect probability can be rationally acceptable while

the inconsistent proposition is not then rational acceptability is not a structural

property.

Of course instances of (1) are attempts not to give a necessary and sufficient

condition for rational acceptability, but only a sufficient one. The existence of a

structural sufficient condition for rational acceptability, unlike that of a structural

necessary and sufficient condition, does not imply that rational acceptability is itself

structural. So, to address such proposals, we need Proposition 2.1, and not just the

above corollary. Assuming that rational acceptability is aggregative, the proposition

tells us that if there is a sufficient condition for rational acceptability that is both

structural and nontrivial, in the sense that at least one proposition with probability

less than 1 has it, then the inconsistent proposition is rationally acceptable. Hence,

any proposal properly called a solution to the lottery paradox—which cannot allow
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the inconsistent proposition to be rationally acceptable—is, if structural, trivial, just

as the proposals depicted in section 1 were seen to be.

To appreciate exactly how damaging this is to the project of finding a formal so-

lution to the lottery paradox, extend the term ‘structural’ to relations and predicates

as well, in the following obvious way: a relation R between propositions is structural

if it holds for all propositions ϕ1, . . . , ϕn and all automorphisms of propositions f

that R(ϕ1, . . . ,ϕn) iff R
(

f (ϕ1), . . . , f (ϕn)
)

; and a predicate is structural if it denotes

either a structural property or a structural relation. We further need the notion of de-

gree of a predicate, which for an n-ary,mth-order predicate R is defined inductively

as follows:

1. d
(

R(X1, . . . , Xn)
)

= 0 if R is primitive;

2. d
(

R(X1, . . . , Xn)∨Q(X1, . . . , Xn)
)

= max
[

d
(

R(X1, . . . , Xn)
)

,d
(

Q(X1, . . . , Xn)
)]

+1;

3. d
(

¬R(X1, . . . , Xn)
)

= d
(

R(X1, . . . , Xn)
)

+ 1;

4. d
(

∀Xi1 · · ·∀Xik<nR(X1, . . . , Xn)
)

= d
(

R(X1, . . . , Xn)
)

+ 1.

And finally, for any set W the following definition provides us with a convenient

shorthand for iterations of the operation of taking the powerset: ℘0(W) := ℘(W);

℘n(W) := ℘
(

℘n−1(W)
)

.

Then consider the following:

Proposition 2.3 Any predicate defined purely in terms of structural predicates by

means of the Boolean operators and quantification is structural.

Proof: The proof is by a double induction over the order of quantification and the

degree of predicates.

We first prove that the proposition holds for the case of first-order quantification.

Assume a set W of worlds, and let variables ϕi range over ℘(W) and the variable f

over automorphisms of ℘(W). For the induction over the degree of predicates, the

induction hypothesis then is that

∀ϕ1 · · ·∀ϕm∀f
[

R(ϕ1, . . . ,ϕm)a R
(

f (ϕ1), . . . , f (ϕm)
)]

holds for all m-ary first-order predicates (m ∈ N) of degree n that are defined in

terms of structural predicates only. We must thus prove that it holds for those of

degree n + 1 as well. For the Boolean operations the proof is trivial. We prove the

more difficult case of quantification. Define a predicate Q as Q(ψ) := ∀ϕR(ϕ,ψ),

where R is assumed to be a structural predicate of degree n. It is thus to be shown

that Q(ψ) iff Q
(

f (ψ)
)

for all ψ and f , that is,

∀ψ∀f
[

∀ϕR(ϕ,ψ)a ∀ϕR
(

ϕ, f (ψ)
)]

.

We prove sufficiency; necessity is trivial. Consider any ψ such that ∀ϕR(ϕ,ψ). We

must then prove that

(8) ∀f∀ϕR
(

ϕ, f (ψ)
)

.

Let f be an arbitrary automorphism. It follows from the induction hypothesis and

our assumption that, for allϕ, R(ϕ,ψ), that R
(

f (ϕ), f (ψ)
)

for allϕ. Because f is a

1 : 1 function from the set of propositions onto itself, there is for every proposition
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ϕ a proposition ϕ′ such that ϕ = f (ϕ′). Hence, ∀ϕR
(

ϕ, f (ψ)
)

, and since f was

arbitrary, we have (8). Sufficiency then follows from the fact that ψ was arbitrary

too and from the observation that the foregoing generalizes tom-ary predicates for

any m.

Next assume that the proposition holds for all orders of quantification up to

and including k; this is the induction hypothesis for the induction over the order of

quantification. It is to be shown that it holds for k+ 1st-order quantification. First

note that each automorphism f of℘(W) implicitly defines a 1 : 1 function f l on℘l(W)

for all l ∈ N. Where the variable S i ranges over ℘i(W), these functions can be defined

explicitly as: f 1(S1) = {f (ϕ) | ϕ ∈ S1}; f l(S l) = {f l−1(S l−1) | S l−1 ⊆ S l}. In this

notation, the induction hypothesis for the induction over the degree of k+1st-order

predicates is that

(9) ∀Sk+1
1 · · ·∀Sk+1

m ∀f k+1
[

R(Sk+1
1 , . . . , Sk+1

m )aR
(

f k+1(Sk+1
1 ), . . . , f k+1(Sk+1

m )
)]

holds for all m-ary k + 1st-order predicates R of degree n that are defined purely

in structural terms. It must then be shown that it holds for those of degree n + 1

too. Now note that essentially the same reasoning as in the first-order case can

be repeated. For the Boolean operations the proof is again easy, and the case of

k+1st-order quantification follows in exactly the same way as the case for first-order

quantification followed. It may be observed that both (9) and the hypothesis that the

proposition holds for all orders of quantification à k are needed since a definition

of a k+1st-order predicate of degree n+1 may contain kth-order predicates (of any

degree) as well as k+ 1st-order predicates of degree à n. a

It is worth noticing that as long as we consider only finite sets of worlds, a version of

Proposition 2.3 restricted to predicates defined in terms of structural predicates by

means of the Boolean operations and first-order quantification does just as well. For

even though already the proposals considered in section 1 make use of higher-order

quantification in their definitions of the defeating condition, on a finite probability

space higher-order quantification is really dispensable in that predicates defined

by means of higher-order quantifiers all have equivalent definitions in which the

only quantifiers are first-order.10 However, while we will mostly assume a finite

probability space, in section 5 we will briefly discuss the possibility of generalizing

10By way of simple example, take the predicate being a member of an inconsistent set of propositions

each of which has a probability above the threshold, M(ϕ), and assume that W = {w1, . . . , wn}. Where

it is understood that the higher-order quantifiers range over ℘1(W) and the first-order ones over ℘(W),

the predicate is naturally defined as follows:

M(ϕ) := ∃S
[
⋂

S = ⊥∧∀ψ
(

ψ ∈ S → Pr(ψ) > t
)

∧ϕ ∈ S
]

.

But letting ‘CON(ϕ)’ mean that ϕ is consistent and ‘HP(ϕ)’ that ϕ has a probability above t, we can

redefine M(ϕ) simply—though somewhat tediously—using only first-order quantifiers as

M′(ϕ) := ∀ϕi1 · · ·∀ϕi2n−1

[

ϕ ≠ϕi1 ∧ · · · ∧ϕ ≠ϕi2n−1
→

(

¬CON(ϕ ∧ϕi1)∧

HP(ϕ)∧HP(ϕi1)
)

∨
(

¬CON(ϕ ∧ϕi1 ∧ϕi2)∧HP(ϕ)∧HP(ϕi1)∧HP(ϕi2)
)

∨

· · · ∨
(

¬CON(ϕ ∧ϕi1 ∧ · · · ∧ϕi2n−1
)∧ · · · ∧HP(ϕ)∧ · · · ∧HP(ϕi2n−1

)
)]

.

Clearly M(ϕ) iff M′(ϕ), for any ϕ ∈ ℘(W). It should also be clear that basically the same trick will

work just as well for any other predicate defined by means of higher-order quantifiers, and that it will

do so given any finite cardinality of W.
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the results of this and the next section to infinite probability spaces. That makes it

useful that Proposition 2.3 pertains also to structural predicates whose definitions

contain higher-order quantifiers.

To see the generality of Proposition 2.1, then, one only need go through the list

of what can reasonably regarded as the primitive predicates from (meta-)logic, set

theory and probability theory and check that they define (on our model) structural

properties or relations.11 For example, given an automorphism f , ϕ is consistent

iff ϕ ≠ ϕ ∧ ¬ϕ iff f (ϕ) ≠ f (ϕ ∧ ¬ϕ) iff f (ϕ) ≠ f (ϕ) ∧ ¬f (ϕ) iff f (ϕ) is con-

sistent; similar procedures work for the other (meta-)logical and set-theoretic pred-

icates. And the predicate ‘probability’ (and so, concomitantly, ‘conditional prob-

ability’, ‘high probability’, ‘probability above t’, etc.) is, of course, by definition a

structural predicate, for we defined automorphisms as mappings that are, among

others, probability-preserving.

The above result pertains to any structural sufficient condition. Nevertheless,

since all extant formal solutions to the lottery paradox we are aware of instanti-

ate (1), it may be useful to point out what exactly the result implies for schema (1):

First, from Proposition 2.3 it follows that if having a particular defeater D is a struc-

tural property, then not having that defeater is structural as well. Since having

a probability above t is structural, it follows from the same Proposition that the

combination of having a probability above t and lacking a structural defeater is a

structural property. Thus, if the defeater D in (1) is to be defined in terms that

denote structural properties or relations, then any instance of that schema defines

a sufficient condition for rational acceptability that is structural itself. It is easy to

see that the predicates used in (2), (3) and (4) are all structural. But the foregoing

shows that however complicated we make the definition of a defeater, we will not

end up with an adequate solution to the lottery paradox if that definition is to be

cast entirely in structural terms.

3. Some Variations. We consider two variations on the above result. These will

show that some possible responses to the lottery paradox other than those of the

schematic form (1) fare no better than the latter.

One type of alternative response is, for any proposition ϕ such that Pr(ϕ) > t,

to take its high probability as a defeasible reason for holding it rationally acceptable

provided that the high probability resulted from learning certain specific propo-

sitions or a certain type of proposition. The idea, in other words, is to define a

sufficient condition for rational acceptability (partly) in dynamic terms. Assume,

however, that the learning proceeds by the following rule:

Conditionalization (COND) For any propositionϕ such that Pr(ϕ) > 0, let Prϕ repre-

sent the probability distribution that results from Pr whenϕ (and no stronger

proposition) is learnt. Then we say that Prϕ comes from Pr by conditionaliza-

tion on ϕ iff, for all propositions ψ : Prϕ(ψ) = Pr(ψ |ϕ).

11Or one may consult Tarski ([1986]), where the logical notions are characterized as precisely those

that are invariant under all 1 : 1 transformations of the domain of discourse onto itself. As Tarski

(p. 151) remarks, properties concerning the number of elements in a class are, given this character-

ization, logical as well. And as already hinted at in the text, given a finite number of worlds and an

equiprobable probability distribution, marginal probabilities just measure cardinalities and conditional

probabilities ratios between cardinalities. See also van Benthem ([2002]).
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Then if the defeater or defeaters are assumed to be both structural and nontrivial,

we can still derive something just as bad as that the inconsistent proposition is

rationally acceptable.

To see this, we need some more terminology. Given a sequence S = 〈Pr0, . . . ,Prn〉

of probability distributions onW , we call f an automorphism of 〈W,S〉 iff f is an au-

tomorphism of each 〈W,Pri〉. In the context of sequences of probability distributions

we understand a structural property as one that is preserved under automorphisms

in the redefined sense. Furthermore, call a distribution Pr on W quasi-equiprobable

iff for all w,w ′ ∈ W , if Pr({w}) > 0 and Pr({w ′}) > 0, then Pr({w}) = Pr({w ′}). It is

clear that any equiprobable distribution is quasi-equiprobable but that the converse

is not true. Finally, given a set W and a sequence S = 〈Pr0, . . . ,Prn〉 of probability

distributions on W , define W[i] := {w ∈ W | Pri({w}) > 0}. Then we say that a

permutation π on W accords with S iff, for all w ∈ W and all i : 0 à i à n, w ∈ W[i]

iff π(w) ∈ W[i]. Observe that if Pri+1 comes from Pri by COND, then Pri+1(ϕ) = 0

whenever Pri(ϕ) = 0; thus if i à j , W[j] ⊆ W[i].

In order to facilitate our proof showing that the idea broached at the beginning

of this section cannot succeed, we first prove two lemmas:

Lemma 3.1 Let W be a finite set of worlds and let Pr be a quasi-equiprobable distri-

bution on W. Then a distribution Pr′ on W comes from Pr by COND iff (i) Pr′ is a

quasi-equiprobable distribution on W, and (ii) for all w ∈ W, if Pr({w}) = 0, then

Pr′({w}) = 0.

Proof: (⇒) Assume that Pr is a quasi-equiprobable distribution on W and that Pr′

comes from Pr by COND on ϕ, for some proposition ϕ ∈ ℘(W). Then (ii) is ob-

vious, because we have already noted that COND preserves probability 0. For (i):

Pr′({w}) = Pr({w} | ϕ) = Pr({w} ∩ ϕ)/Pr(ϕ). If w 6∈ ϕ, then {w} ∩ ϕ = ∅

so Pr′({w}) = 0. If w ∈ ϕ, then {w} ∩ ϕ = {w} so Pr′({w}) = Pr({w})/Pr(ϕ).

Hence if Pr′({w}) > 0 and Pr′({w∗}) > 0, then w,w∗ ∈ ϕ, Pr({w}) > 0 and

Pr({w∗}) > 0, so Pr({w}) = Pr({w∗}) because Pr is quasi-equiprobable. Conse-

quently, Pr′({w}) = Pr({w})/Pr(ϕ) = Pr({w∗})/Pr(ϕ) = Pr({w∗}).

(⇐) Assume (i) and (ii), and let W ′ = {w ∈ W | Pr′({w}) > 0}. We show that

Pr′ comes from Pr by COND on W ′. Let Pr∗ come from Pr by COND on W ′. Then

for all w ∈ W , if Pr∗({w}) > 0, then w ∈ W ′ and hence, by the definition of W ′,

Pr′({w}) > 0. Conversely, if Pr′({w}) > 0 then w ∈ W ′. Thus, by (ii), Pr({w}) > 0,

so that, by the nature of COND, Pr∗({w}) > 0. Moreover, by (⇒) Pr∗ is a quasi-

equiprobable distribution on W. Since by (i) the same holds for Pr′, Pr∗ and Pr′

are both quasi-equiprobable distributions on W that give a nonzero probability to

exactly the same worlds. Hence Pr∗ = Pr′. a

Lemma 3.2 Let W be finite and S = 〈Pr0, . . . ,Prn〉 be a sequence of probability dis-

tributions on W such that Pri comes from Pri−1 by COND, for all i : 1 à i à n,

with Pr0 quasi-equiprobable, and π be a permutation on W. Let f be defined by

f (ϕ) := {π(w) | w ∈ϕ}. Then f is an automorphism of 〈W,S〉 iff π accords with S.

Proof: (⇒) If w ∈ W , 0 à i à n and f is an automorphism of 〈W,S〉, then Pri({w}) =

Pri
(

f ({w})
)

= Pri
(

{π(w)}
)

, so w ∈ W[i] iff π(w) ∈ W[i].
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(⇐) Suppose π accords with S. To see that f is an automorphism of 〈W,Pri〉 for

all i : 0 à i à n, first observe that, because π is a permutation on W , f automatically

satisfies the first two clauses of Definition 2.1 for all i. In order to see that f satisfies

the third as well for all i, notice that it follows from the assumptions aboutW and S

together with Lemma 3.1 that Pri is quasi-equiprobable for all i : 0 à i à n. Therefore,

since π accords with S, for all w ∈ ϕ and all i : 0 à i à n, Pri({w}) = Pri({π(w)}).

Then by Finite Additivity and the definition of f we have for anyϕ ∈ ℘(W) and all i :

0 à i à n, Pri(ϕ) =
∑

w∈ϕ Pri({w}) =
∑

w∈ϕ Pri({π(w)}) =
∑

w ′∈f (ϕ) Pri({w
′}) =

Pri
(

f (ϕ)
)

. a

We are now set to prove the main proposition:

Proposition 3.3 Let W be a finite set of worlds and S = 〈Pr0, . . . ,Prn〉 a sequence

of probability distributions on W such that Pr0 is quasi-equiprobable and Pri comes

from Pri−1 by COND, for all i : 1 à i à n. Let P be structural, Q aggregative, and

P sufficient for Q. Then if some proposition ϕ such that Prn(ϕ) < 1 has P, some

proposition ψ such that Prn(ψ) = 0 has Q.

Proof: Consider any ϕ ∈ ℘(W) such that Prn(ϕ) < 1 and ϕ has P. Then for some

world w∗ ∈ W[n], w∗ 6∈ ϕ. It follows that for each wi ∈ W[n], there is a per-

mutation πi on W such that πi(wi) = w
∗ and πi(w

∗) = wi and πi(w) = w for

all other w ∈ W. Again let fi(ψ) := {πi(w) | w ∈ ψ} for all propositions ψ.

Since πi merely swaps wi and w∗, where both wi ∈ W[n] and w∗ ∈ W[n], it is

clear that πi accords with S. Thus, by Lemma 3.2, fi is an automorphism of 〈W,S〉.

LetW[n] = {w1, . . . , wm}. Then, since P is structural, fi(ϕ) has P for all i : 1 à i à m.

And since P is sufficient forQ, andQ is aggregative, f1(ϕ)∧· · ·∧ fm(ϕ) hasQ. But
(

f1(ϕ)∧ · · · ∧ fm(ϕ)
)

∩W[n] = ∅ and thus Prn
(

f1(ϕ)∧ · · · ∧ fm(ϕ)
)

= 0. a

As an immediate and obvious consequence we state, without proof, the following

corollary:

Corollary 3.4 Same assumptions about W as in Proposition 3.3. Let P be both struc-

tural and aggregative. Then if some propositionϕ such that Prn(ϕ) < 1 has P, some

proposition ψ such that Prn(ψ) = 0 has P.

But of course the most relevant consequence of Proposition 3.3 is that saying that,

unless a defeater D applies to it, a proposition is rationally acceptable if it is highly

probable as a result of n (specific) learning events by means of COND, for any n ∈ N,

will not help to avoid trivialization as long as the defeater is to be defined in struc-

tural terms and rational acceptability is supposed to be an aggregative property. For

while discussions of the lottery paradox have focused on the (unwanted) implication

that contradictions can be rationally acceptable, that a proposition to which we as-

sign probability 0 is rationally acceptable is an implication we will want just as much

to exclude.

The foregoing may be as interesting for what it suggests as for what it shows.

For it suggests looking at rules for updating probabilities other than COND. Here the

most obvious alternative is Jeffrey conditionalization. COND applies only in cases

in which some proposition’s probability is raised to 1. But Jeffrey argued that there
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may be learning events in which we become certain of no proposition, even though

we do learn something in them. To use one of Jeffrey’s examples (Jeffrey [1983],

pp. 165–6), a glimpse of a cloth by candlelight may raise our probability that the

cloth is green without raising it to 1. In order to be able to represent formally the

effects of such events on our probability assignments, Jeffrey proposed the following

generalization of COND:

Jeffrey Conditionalization (JCOND) Let {ψi} be a countable collection of proposi-

tions which partition logical space and which all have some positive probability

for a given agent. Further let Prold and Prnew be the agent’s pre-experience and

post-experience probability function, respectively. Then the change from the

former to the latter accords with Jeffrey conditionalization iff for all proposi-

tions ϕ

Prnew(ϕ) =
∑

i

Prnew(ψi)Prold(ϕ | ψi).

The ψi ’s are to be thought of as being directly affected by the agent’s experience;

in the cloth example they are plausibly thought of as propositions about the cloth’s

colour. Note that if one of the ψi ’s gets probability 1, then JCOND reduces to COND.

Call a case of JCOND essential if it does not reduce to COND.

To see why this is relevant to the above result, notice that in the proof of Propo-

sition 3.3 it was crucial that all worlds that after the n supposed learning events had

some positive probability had the same positive probability. If changes of credences

are by COND, then, as explained in the proof of Lemma 3.1, that is preserved, at least

on our probability model. But if changes of credences are or may be by JCOND, then,

on a finite probability space, quasi-equiprobability is no longer preserved. In fact, it

follows from Lemma 3.1 that on a finite probability space no essential application

of JCOND to a quasi-equiprobable distribution results in a quasi-equiprobable dis-

tribution: condition (ii) of that lemma always holds in cases of JCOND, so if the new

distribution is quasi-equiprobable it comes by COND from the old distribution and

therefore not essentially by JCOND.

Example 3.1 LetW be finite and consider any case of change of credences where for

all w ∈ W , Prold({w}) > 0 and Prnew({w}) > 0 and Prold ≠ Prnew. Then Prnew does

not come from Prold by COND, since the set conditionalized on would have to be W

itself, in which case Prold = Prnew. But Prnew does come from Prold by JCOND since

we can take our partition as being that into all singletons of worlds. These facts

establish a large range of examples. See further Williamson ([2000], p. 216 n). a

One thing this implies is that Proposition 3.3 does not extend to the supposition

that at least some elements of the sequence of probability distributions Pr0, . . . ,

Prn are derived from their predecessors by means of JCOND. And unless we have

quasi-equiprobability of all elements of S = 〈Pr0, . . . ,Prn〉, we have no guarantee

that there exists any automorphism of 〈W,S〉—other than the ‘trivial’ one, that is,

which maps each proposition onto itself. Consequently, if changes of credences

may be by JCOND, then stipulating that a proposition is rationally acceptable if it is

highly probable as a result of certain changes of credences, provided a defeater D

does not apply to it, might help to avoid trivialization, even if the defeater is defined

strictly in structural terms. Since, however, for reasons given in Williamson ([2000],

13



pp. 216–8), JCOND is of doubtful epistemic significance at best, we doubt that the

foregoing can be welcomed as offering an escape.

Now to the second variation. Earlier we said that abandoning CP is nowadays

generally found to be too drastic a response to the lottery paradox. Some might

think, however, that replacing the principle by the following just slightly stricter

principle is both tolerable and sufficient to rid us of the paradox:

Restricted Conjunction Principle (RCP) If each of the propositions ϕ and ψ is ratio-

nally acceptable and ϕ ∧ψ ≠ ⊥, then ϕ ∧ψ is rationally acceptable.

From RCP we can easily derive the generalization that if each of finitely many proposi-

tions is rationally acceptable, and their conjunction is consistent, then it is rationally

acceptable too.

Supplanting CP by RCP would not be an unprecedented move. It is well known

that the so-called Principle of Indifference, according to which (roughly put) mutually

exclusive propositions ought to be assigned equal initial probability, at least absent

any reason to the contrary, is inconsistent. But because of its intuitive appeal, and

its many successful applications,12 it has seemed the best strategy to some not to

abandon the principle altogether but to try and salvage as much as possible of it by

searching for a restricted consistent version.13,14

Yet switching to RCP offers no solace. For call P a C-aggregative property of

propositions if whenever ϕ has P and ψ has P, and in addition ϕ∧ψ is consistent,

then ϕ ∧ψ has P. We then still have

Proposition 3.5 Same assumptions as in Proposition 2.1, except that Q is now as-

sumed to be only C-aggregative. Then if some propositionϕ such that Pr(ϕ) < 1 has

P, some proposition ψ such that Pr(ψ) à 1/ |W | has Q.

Proof: Let everything be as in the proof of Proposition 2.1, but now consider the

sequence of propositions ψ1, . . . , ψn, where ψ1 = f1(ϕ) and ψi+1 = ψi ∧ fi+1(ϕ)

and W = {w1, . . . , wn}. As before, ψn = ⊥. Consider the least k such that ψk = ⊥. If

k = 1, then ϕ = f1(ϕ) = ⊥ has P and therefore Q and Pr(ϕ) = 0, so we are done.

Suppose that k > 1. Thus ψj ≠ ⊥ for j < k. For each i, fi(ϕ) has P (because P is

structural) and therefore Q, so for each j < k, ψj has Q by C-aggregativity. Observe

that each fj+1(ϕ) lacks at most one member that fj(ϕ) may have, namely wj+1.

Consequently,
∣

∣ψj
∣

∣ à
∣

∣ψj+1

∣

∣ + 1. Therefore |ψk−1| = 1. Since Pr is equiprobable,

Pr(ψk−1) = 1/ |W |. a

Again we state, without proof, a simpler corollary:

Corollary 3.6 Same assumptions as Corollary 2.2, except that P is now assumed to

be structural and C-aggregative. Then if some proposition ϕ such that Pr(ϕ) < 1

has P, some proposition ψ such that Pr(ψ) à 1/ |W | has P.

12See Jaynes ([1973]); but also Uffink ([1995]).
13See, e.g., Keynes ([1921]) and Castell ([1998]).
14Douven and Uffink also follow the strategy of restricting CP (though not quite in the way suggested

here) in their ([2003]) solution to Makinson’s ([1965]) preface paradox.
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Assuming RCP is tantamount to assuming that rational acceptability is a C-aggre-

gative property. Given this assumption, it is thus a further simple corollary of Propo-

sition 3.5 that if some sufficient condition for rational acceptability is structural, a

proposition can be rationally acceptable even if one is as good as certain that it is

false. After all, the cardinality ofW can be assumed as large as we want; accordingly,

1/ |W | can be assumed to be as close to 0 as we want. Again this is a possibility one

would just as much want to exclude as the possibility that the inconsistent propo-

sition is rationally acceptable.

Finally note that combining the variations depicted above will not help either:

Proposition 3.7 Let W be finite and let 〈Pr0, . . . ,Prn〉 be as in Proposition 3.3. Fur-

thermore, let P be structural, Q C-aggregative, and P sufficient for Q. Then if

some proposition ϕ such that Prn(ϕ) < 1 has P, then some proposition ψ such that

Prn(ψ) à 1/ |W[n]| has Q.

Corollary 3.8 Same assumptions about W as in Proposition 3.3. Let P be both struc-

tural and C-aggregative. If some proposition ϕ such that Prn(ϕ) < 1 has P, then

some proposition ψ such that Prn(ψ) à 1/ |W[n]| has P.

The proofs of these results can be obtained basically just by combining the proofs of

Propositions 3.3 and 3.5 (and, for the corollary, making the requisite substitutions);

for that reason they are omitted.

4. Adding Modalities. We have seen that any instance of (1) that is both structural

and nontrivial, or indeed any other sufficient condition for rational acceptability that

meets those criteria, leads straight to the conclusion that the inconsistent proposi-

tion is rationally acceptable. And what prima facie may have seemed promising

escape routes still within the confines of a formal approach to the lottery paradox

did not work. While we cannot claim to have considered all possible escape routes of

a formal variety, the above does seem to warrant the conclusion that the prospects

for a purely formal solution to the paradox are dim. It may therefore be instructive

to see, if only in rough outline, how an appeal to informal notions might be of help.

Especially when such notions can be given a possible worlds semantics or natural

axiomatization, a solution to the lottery paradox formulated in terms of them might

still be somewhat to the liking of those who had hoped for a formal solution.

One obvious way to try to increase the expressive power of our model is by

adding modal operators. So far we cannot represent modalities in our model, for we

are not assuming an accessibility relation on the elements of W. But of course we

might extend the model by defining a relation R ⊆ W ×W ; we call w accessible from

w∗ iff wRw∗.

That an operator can be axiomatized or given a possible worlds semantics does

not automatically make that operator purely formal. For instance, the accessibility

relation in its semantics may itself be defined in informal terms, such as similarity

or knowledge. A natural criterion for an accessibility relation to be purely formal

is that it should be invariant under all permutations of W. That is equivalent to

requiring it to be homogeneous in the following sense:
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Definition 4.1 Let W be a set of worlds and R ⊆ W ×W. Then the frame 〈W,R〉 is

homogeneous iff

1. for all w,w ′ ∈ W , wRw iff w ′Rw ′;

2. for all w,w ′, x, x′ ∈ W such that w ≠ x and w ′ ≠ x′, wRx iff w ′Rx′. a

As can be readily verified, the class of homogeneous frames is exhausted by those

whose accessibility relation is defined by any of the following (where W is the set of

worlds of the given frame):

(a) R = ∅;

(b) R = {〈w,w〉 | w ∈ W};

(c) R = {〈w,w ′〉 | w,w ′ ∈ W};

(d) R = {〈w,w ′〉 | w,w ′ ∈ W ∧w ≠ w ′}.

The accessibility relation of a homogeneous frame is structural in the sense above,

because it is preserved under all permutations. Thus adding modal notions defined

in terms of a homogeneous frame will not affect our previous results.

We pause to identify the logic of the class of homogeneous frames. As is well

known, to obtain the logic of the class of frames of type (a) one adds to the weakest

normal modal logic K the Ver schema �ϕ; for the class of frames of type (b) one

adds to K the Triv schema �ϕ ↔ ϕ; for the class of frames of type (c) one adds

to K the schemas characteristic of the modal logic S5, in particular the T schema

�ϕ → ϕ, the B schema ϕ → ��ϕ and the 4 schema �ϕ → ��ϕ. For the class of

frames of type (d), one adds the B schema and the weakening 4′ of the 4 schema:

(ϕ ∧ �ϕ) → ��ϕ (Segerberg [1980]). It is easy to check that all instances of the B

and 4′ schemas are also derivable in the other three logics. Consequently, the logic

of the class of all homogeneous frames is the same as the logic of the class of all

frames of type (d) and can therefore be axiomatized in the same way.

By contrast, the accessibility relation of a non-homogeneous frame is not pre-

served under all permutations of W , and therefore is not preserved under all au-

tomorphisms of 〈W,Pr〉 when W is finite and Pr equiprobable. Consequently, our

previous results do not generalize to the non-homogeneous case, since automor-

phisms as defined above need not preserve modal properties of propositions.

Example 4.1 Let f be the automorphism that interchanges {w1} and {w2} in Figure 1.

In that model, ϕ has the property of implying a possibility because ϕ → �ϕ is true

•
6

•-
w1

ϕ

w2

¬ϕ
•
6

•-
w1

f (¬ϕ)

w2

f (ϕ)

Figure 1: Models with a non-homogeneous underlying frame

at all worlds, whereas f (ϕ) lacks that property, because f (ϕ) → �ψ is false at the

‘blind’ world w2 for every proposition ψ. a
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In sum, on the modal approach we might be able to define a defeater in terms that

are to some extent formally constrained, although they will not be purely formal.

Epistemic and doxastic modalities typically correspond to accessibility relations

that generate non-homogeneous frames. For example, knowledge violates the B

and 4 schemas, and therefore the 4′ schema too, which is equivalent to 4 in the

presence of the T schema, which knowledge trivially satisfies (Williamson [2000]).

However, on the approach of Williamson ([2000]), known propositions have proba-

bility 1 on the evidence, and only propositions with probability 1 on the evidence are

fully rationally acceptable, so no definition of a defeater is forthcoming of the kind

for which many have hoped. It is far from obvious how to employ non-homogeneous

epistemic or doxastic modalities in order to define a plausible and illuminating suf-

ficient condition for rational acceptability short of probability 1. However, we will

not attempt here to argue that it cannot be done. The foregoing simply indicates

one direction in which some may seek a solution to the lottery paradox—with no

guarantee that there is one.

5. Anticipated Objections. In closing we present, and try to defuse, two objections

that might be raised against the model we used in obtaining our negative results.

First, it may be pointed out that the proofs of Propositions 2.1, 3.3, 3.5 and

3.7 and the associated Lemmas and Corollaries heavily depend on the fact that our

model is a finite probability space. It must be admitted that there is no straightfor-

ward generalization to infinite probability spaces. A crucial fact for the proofs of

those Propositions is an obvious consequence of Finite Additivity: when all worlds

in a subset W∗ of the finite set W have equal probability, all subsets of W∗ of

equal cardinality have equal probability (for Proposition 2.1, let W∗ be W itself).

But all subsets of equal cardinality of an infinite set W∗ have equal probability

only in the trivial case in which Pr(W∗) = 0. For any infinite set W∗ can be parti-

tioned into two disjoint subsets X and Y each of equal cardinality to W∗ itself; thus

Pr(W∗) = Pr(X) + Pr(Y). If equal cardinality implies equal probability for subsets

ofW∗, then Pr(X) = Pr(W∗) = Pr(Y), so Pr(W∗) = Pr(W∗)+Pr(W∗), so Pr(W∗) = 0.

Thus we cannot make progress simply by considering probability distributions that

assign equal probability to all worlds in an infinite set W∗ of positive probability,

either by assigning probability 0 to all worlds (which requires the abandonment of

Countable Additivity ifW∗ is countable) or by using non-standard analysis, for such

distributions still do not yield what we want for our proofs at the level of subsets

of W∗.

Of course, we could consider switching to ‘non-normalizing’ probabilities (see

Renyi [1970]). But that option is controversial. A better response, in our view, is to

give the model we employed a kind of contextualist twist by noting that our results

do not require the finitely many equiprobable worlds to be maximally specific. It is

enough to assume that they are ‘specific enough’ for whatever purposes may be at

hand—that is, to be more precise, a set of mutually exclusive and jointly exhaustive

states that determine answers to all the questions that happen to be relevant to a

particular application. In addition to this, it should be noted that the case of finitely

many equiprobable worlds is the simplest nontrivial case, and a good treatment of

the lottery paradox should at least work for the simple cases—especially since the
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phenomena of rational acceptability in which we are interested do not seem to arise

only for infinite probability spaces.

But we can even do better than this. For we can obtain something hardly less

destructive than our previous results if the finiteness assumption is dropped. First,

one more definition:

Definition 5.1 Let Pr be a probability distribution on a set W of worlds and ε ∈ R

such that 0 à ε à 1. Pr is ε-equiprobable iff for some finite W∗ ⊆ W :

1. Pr(W∗) á 1− ε;

2. for all w,w ′ ∈ W∗, Pr({w}) = Pr({w ′}). a

Example 5.1 Letw1, w2, w3, . . . , be an enumeration of the elements of some infinite

set W of worlds. Then for any n ∈ N, the following defines an 1/n-equiprobable

distribution on W :

Pr({wi}) =

{

1
n if 1 à i à n− 1;
1
n

(

1
2

1+i−n
)

if i á n.
a

Now consider

Proposition 5.1 Let Pr be an ε-equiprobable distribution on a setW , P be structural,Q

aggregative, and P sufficient forQ. Then if some propositionϕ such that Pr(ϕ) < 1−ε

has P, then some proposition ψ such that Pr(ψ) à ε has Q.

Proof: Let W∗ satisfy conditions 1 and 2 of Definition 5.1. Suppose that ϕ has P

and Pr(ϕ) < 1 − ε. Thus Pr(ϕ) < Pr(W∗), so W∗ È ϕ, so for some w∗ ∈ W∗,

w∗ 6∈ ϕ. Now suppose that wi ∈ W
∗. Let πi be the permutation of W such that

πi(wi) = w
∗, πi(w

∗) = wi and πi(w) = w for all other w ∈ W. Define fi from ℘(W)

to ℘(W) in the usual way: fi(ψ) := {πi(w) | w ∈ ψ} for all ψ ∈ ℘(W). As usual, fi is

an automorphism. We need only check the third condition: fi(ϕ) = fi
(

(ϕ ∧W∗)∨

(ϕ ∧ ¬W∗)
)

=
[(

fi(ϕ) ∧ fi(W
∗)

)

∨ fi(ϕ ∧ ¬W
∗)

]

=
[(

fi(ϕ) ∧W
∗
)

∨ (ϕ ∧ ¬W∗)
]

,

so Pr
(

fi(ϕ)
)

= Pr
(

fi(ϕ) ∧W
∗
)

+ Pr(ϕ ∧ ¬W∗); by conditions 1 and 2, if ψ ⊆ W∗,

then Pr(ψ) = Pr(W∗) |ψ| / |W∗|, so Pr
(

fi(ϕ)∧W
∗
)

= Pr(W∗) |fi(ϕ)∧W
∗| / |W∗| =

Pr(W∗) |ϕ ∧W∗| / |W∗| = Pr(ϕ ∧ W∗); thus Pr
(

fi(ϕ)
)

= Pr(ϕ ∧ W∗) + Pr(ϕ ∧

¬W∗) = Pr(ϕ). Since P is structural, each fi(ϕ) has P. Since P is sufficient for

Q, each fi(ϕ) has Q. Since Q is aggregative, f1(ϕ) ∧ · · · ∧ fn(ϕ) has Q. For wi ∈

W∗, wi 6∈ fi(ϕ), so f1(ϕ) ∧ · · · ∧ fn(ϕ) ⊆ ¬W∗ where W∗ = {w1, . . . , wn}. So,

Pr
(

f1(ϕ) ∧ · · · ∧ fn(ϕ)
)

à Pr(¬W∗) = 1 − Pr(W∗) à ε by the first condition of

Definition 5.1. a

Corollary 5.2 Let Pr be an ε-equiprobable distribution on a set W and let P be both

structural and aggregative. Then if some propositionϕ such that Pr(ϕ) < 1−ε has P,

some proposition ψ such that Pr(ψ) à ε has P.

Proof: From the proof of Proposition 5.1 by taking P and Q to be identical. a

Note that we do not require all worlds to have positive probability, so the results

apply both to countable and uncountable W.
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Informally, the point of ε-equiprobability is that the smaller ε is, the more likely

we are to be in the subsetW∗ for whose subsets equal cardinality entails equal prob-

ability. As already noted, no infinite setW∗ of positive probability has this property.

In a sense, therefore, ε-equiprobability as ε tends to 0 is the best possible approxima-

tion for our purposes to strict equiprobability over infinite domains. To illustrate,

consider the 1/n-equiprobable distribution Pr[n] as defined in Example 5.1, and let

W∗[n] = {w1, w2, . . . , wn}. For m < n, Pr[n] is closer than Pr[m] to equiprobability

in at least two ways. First, the probability of being in the set of equiprobability is

higher, because Pr(W∗[m]) = (m− 1)/m < (n− 1)/n = Pr(W∗[n]). Second, the set

of equiprobability is larger, because W∗[m] ⊂ W∗[n]. Now Proposition 5.1 yields

a sort of trivialization result ‘in the limit’. For by taking n larger and larger or, in

the general case, ε smaller and smaller, we have better and better approximations to

Proposition 2.1 (with probability 0 in place of inconsistency). It will be obvious how

to get increasingly good approximations to Propositions 3.3, 3.5 and 3.7 for infinite

models too.

The second possible objection we want to consider is that it is a rather serious

drawback of our model that we are working with a coarse-grained conception of

propositions according to which propositions are individuated solely by their truth

conditions. For—it might be said—rational acceptability is, just like belief for in-

stance, plausibly thought of as a hyperintensional notion; that is to say, it seems to

matter to our verdicts regarding the rational acceptability of a proposition how that

proposition is presented to us (and so not just what worlds it is true in).

A first thing to note in this connection is that insofar as the objection points to a

limitation of our model, it is one that is inherited from the very analytic tool that is

central to all probabilistic approaches to rational acceptability (whether or not they

are fully formal), namely, probability theory. For although a pretheoretic concep-

tion of probability also seems to be a hyperintensional notion, it must by way of

idealizing assumption be considered an intensional (but not hyperintensional) one.

For example, it would from an intuitive viewpoint seem entirely reasonable, at least

presently, to believe Goldbach’s conjecture to some non-extreme degree. Neverthe-

less, the conjecture is either necessarily true or necessarily false and so expresses

the same proposition as either ‘2 + 2 = 4’ or ‘2 + 2 = 5’. Since it is a theorem of

probability theory that Pr(ϕ) = Pr(ψ) whenever ϕ and ψ are logically equivalent,15

it follows that anyone believing the conjecture to a degree different from the one to

which she believes that 2+2 = 4—if the conjecture is true—or the one to which she

believes that 2+2 = 5—if the conjecture is false—counts as being incoherent. More

generally, according to probability theory it is immaterial how propositions are pre-

sented to us. So if cutting propositions coarsely is a problem here, it is simply the

price to be paid for using probability theory in the analysis of rational acceptability.16

Secondly, and equally importantly, it appears far from implausible to assume that in

many ordinary situations people know the identities and differences of propositions

under all contextually relevant modes of presentation. So at least in such situations

there seems to be no impediment to cutting propositions coarsely. And, to make

15Logical equivalence is in this setting standardly taken to comprise mathematical equivalence; see,

e.g., Howson and Urbach ([1993], p. 20).
16Indeed, it seems to be a price that comes with probabilistic analyses of notions from mainstream

epistemology generally; see for this point in connection with probabilistic analyses of the notion of

coherence Douven and Meijs ([2006]).

19



a point similar to one made a few paragraphs back, any adequate solution to the

lottery paradox should work for those situations as well.
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