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ABSTRACT: Operational epistemology is, to a first approximation, the attempt to 

provide cognitive rules such that one is in principle always in a position to know whether 

one is complying with them. In Knowledge and its Limits, I argue that the only such rules 

are trivial ones. In this paper, I generalize the argument in several ways to more 

thoroughly probabilistic settings, in order to show that it does not merely demonstrate 

some oddity of the folk epistemological conception of knowledge. Some of the 

generalizations involve a formal semantic framework for treating epistemic probabilities 

of epistemic probabilities and expectations of expectations. The upshot is that operational 

epistemology cannot work, and that knowledge-based epistemology has the right 

characteristics to avoid its problems. 
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I 

 

As advice to enquirers, ‘Believe the true’ is notoriously useless. It provides no method for 

believing what it is true. We might try to make the point precise by defining a method as 

a set of rules such that one is, at least in principle, always in a position to know whether 

one is complying with them. To provide enquirers with methods in that strict sense looks 

like a good project for epistemology, if not the only one. Such a method need not 

guarantee true conclusions; it might just make them more likely. Call the attempt to 

provide such methods operational epistemology. 

 Operational epistemologists may allow some value to non-operational 

epistemology, in third-personal assessments of enquiry which take into account facts 

unavailable to the enquirers under assessment. But, they argue, we should also do 

epistemology in a first-personal way, in which epistemologists think of the enquirers as 

themselves. More precisely, it should provide enquirers with guidance which they can 

actually use, in whatever situation they find themselves. Rationality might be conceived 

as requiring conformity with the norms of operational epistemology, but not with the 

norms of non-operational epistemology (such as true belief). Then the thought is that the 

demands of rationality should be transparent to the agent: ignorance and error as such 

may be failures, but not failures of rationality. 

 The injunction to proportion your confidence in a hypothesis to its probability, 

conditional on what you know, has no place in operational epistemology, for one is not 

always in a position to know how much one knows. In a situation indiscriminable from 

one in which one knows something, one may fail to know without being in a position to 
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know that one fails to know. One may also know without being in a position to know that 

one knows. Operational epistemologists need to work with a notion of evidence on which 

one is always in a position to know how much is part of one’s evidence and how much is 

not, if they are to propound the injunction that one should proportion one’s confidence in 

a hypothesis to its probability, conditional on one’s evidence. 

 An agent might be built so that its behaviour fits a rule even though it is not 

guided by it, because the agent has no epistemic access to whether it is complying with 

the rule. Fitting may extend beyond purely internal rules, such as performing 

computations with a specific structure or even having one’s perceptual faculties in good 

working order, to external conditions such as correctly perceiving the state of one’s local 

environment. But operational epistemology as understood here concerns only rules 

compliance with which is epistemically accessible to the agent.  

Call a condition luminous if and only if, necessarily, whenever it obtains one is in 

a position to know that it obtains (given that one is a conscious agent with the relevant 

concepts). That one is complying with a given method in the sense of operational 

epistemology is a luminous condition. Thus operational epistemology and the 

corresponding conception of rationality require the existence of many non-trivial 

luminous conditions. Of course, luminosity is not itself part of the operational 

epistemologist’s advice; rather, it is a precondition of figuring in any such advice. 

In Knowledge and its Limits (Williamson 2000: 93-113) I argued that virtually the 

only luminous conditions are trivial ones, which obtain always or never. Let C be a non-

trivial luminous condition, which obtains sometimes but not always. Imagine a process of 

very gradual change from a case in which C clearly obtains to a case in which C clearly 
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fails to obtain; throughout, the agent is considering whether C obtains. For simplicity, 

imagine that it is certain for the agent that they will undergo such a gradual change in the 

underlying parameter relevant to C, for instance felt temperature. Let t0, …, tn be a 

succession of times at very brief intervals from the beginning of the process to the end. 

Informally, the difference between the agent’s situation at ti and at ti+1 is too small to be 

recognized by the agent; it is below their threshold of discrimination. Suppose that C 

obtains at ti. Since C is luminous, C obtains at ti only if the agent is then in a position to 

know that C obtains. But an agent who is in a position to know that a condition obtains 

and considers whether it obtains knows that it obtains. Thus the agent knows at ti that C 

obtains. Furthermore, I argued for the auxiliary premise that the agent knows at ti that C 

obtains only if C does obtain (whether or not the agent knows it) at ti+1. The argument 

worked by consideration of the way in which knowledge implies a sort of reliably true 

belief; we need not go into details here. Thus, given the premise that C obtains at ti, one 

can deduce that C obtains at ti+1. Since i was arbitrary, the inference works whenever 0 ≤ 

i < n. By hypothesis, C clearly obtains at t0. Thus, iterating the inference n times, one 

finally reaches the conclusion that C obtains at tn. But that is absurd; by hypothesis, C 

clearly fails to obtain at tn. Given that the other features of the example can all be 

realized, as they can in the relevant cases, what must be given up is the assumption that C 

is luminous. By contraposition, its luminosity forces its triviality. The triviality of 

luminous conditions undermines operational epistemology. The operational 

epistemologist’s conceptions of rationality and evidence cannot be satisfied. 

Evidently, the anti-luminosity argument rests considerable weight on the 

reliability considerations underlying the auxiliary conditional premise that the agent 
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knows at ti that C obtains only if C obtains at ti+1. That premise has indeed been 

challenged (for example, by Brueckner and Fiocco 2002, Neta and Rohrbaugh 2004 and 

Conee 2005). The specifics of those challenges will not be discussed here. However, 

some general remarks may clarify the position, and enable readers to work out for 

themselves how detailed responses to those critics would go. 

First, the auxiliary conditional premise is not intended as a lawlike generalization; 

it is simply a description of a specific hypothetical process, justified by construction of 

the example. That the agent knows at ti is not claimed to entail that C obtains at ti+1 

independently of the continuation of the gradual process at the later time. In particular, it 

depends on the fact that, by hypothesis, the agent remains alive at the later time. 

Second, it is crucial to the example that, again by hypothesis, no sudden drastic 

change occurs during the process in the basis on which the agent believes that C obtains, 

that is, in the way in which the belief is formed or maintained, even if the agent is 

completely unaware of the change. The basis is not confined to phenomena of which the 

agent is conscious. For instance, one may know and believe on a highly reliable basis at 

one time, even though, a moment later, without one’s realizing, it a mad scientist 

interferes with one’s brain to make the basis of one’s subsequent beliefs highly 

unreliable. 

Third, even granted that the basis of belief is inaccessible to consciousness, 

reliability need not be determined by local properties of the basis. For instance, if 

someone continues over some time to believe that Lincoln is President on the basis of 

automatic updating, without receiving further confirmation, the reliability of the basis 

may depend on whether Lincoln is about to be assassinated. 
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The main aim of the present paper is to develop analogues of the anti-luminosity 

considerations for probabilistic concepts in place of the concept of knowledge. Such 

analogues generalize the original argument and act as a test of its soundness and 

significance. For someone might suspect the anti-luminosity argument of exploiting 

peculiarities of the concept of knowledge, either to conceal a subtle fallacy or to derive a 

result that, although correct, merely reflects a peculiarity of western European culture or 

of human folk epistemology more generally. Such a critic may hold that, in order to cut 

cognition at its joints, we should theorize primarily not in terms of knowledge but of 

probability, a more sophisticated and graded concept, and one which may seem better 

suited to the purposes of operational epistemology. However, if we can still establish 

analogues of the anti-luminosity conclusions even in the new terms, then the original 

result is shown to be robust after all. More specifically, such generalizations of the 

original argument show that operational epistemologists cannot survive by formulating 

their test for an operational method in probabilistic terms. 

 The relevant concept of probability is epistemic or evidential probability, 

probability on one’s total evidence. Now in Knowledge and its Limits (2000: 209-237) I 

argued that such evidential probability itself depends on knowledge, because one’s total 

evidence just is the total content of one’s knowledge; that is the equation E = K. 

Obviously, to rely on that equation here would violate the point of the exercise. The 

equation E = K will therefore not be used as a premise in what follows. Probabilistic 

claims will be assessed in probabilistic terms, without reference to questions of 

knowledge as such. However, in the upshot, similarities between the anti-luminosity 

conclusions for knowledge and for probability count against the idea that our 
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epistemological thinking is badly distorted by our focus on knowledge rather than on 

probability. 

 

 

II 

 

Non-trivial conditions have been thought to be luminous because they have been 

regarded as epistemically perfectly accessible to the agent, completely open to view. 

When such a condition obtains, there should not even be a small non-zero probability that 

it does not obtain. The picture is that the agent has access to such a condition without the 

need of mediating evidence, because its obtaining is immediately evident to the agent. 

Thus the natural analogue of luminosity in probabilistic terms may be defined thus: 

 

(LP) Condition C is luminous in probability 1 if and only if in every case in which C 

obtains, the probability that C obtains is 1. 

 

Such a condition obtains with certainty whenever it obtains at all. ‘Probability’ in (LP) is 

to be understood as evidential probability, which is not assumed to be understood 

specifically in terms of knowledge. In this sense, probability is not objective chance; a 

natural law may have an objective chance of 1 of obtaining even though nobody has the 

slightest reason to think that it obtains. 

 We shall not attribute any purely computational limitations to the agents in 

question. Although extant forms of would-be operational epistemology tend to make very 
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severe demands on agents’ computational capacities, in failing to meet such demands one 

may be considered to fall short of perfect rationality. By contrast, such a verdict would be 

quite inappropriate in the sort of cases to be considered here. 

As before, imagine a process of very gradual change from a case in which C 

clearly obtains to a case in which C clearly fails to obtain. It is certain for the agent that 

they will undergo such a gradual change in the underlying parameter relevant to C. Let t0, 

…, tn be a succession of times at very brief intervals from the beginning of the process to 

the end. Informally, the difference between the agent’s situation at ti and at ti+1 is below 

the agent’s threshold of discrimination. Apart from this limit on discrimination there is no 

further obstacle to the agent’s determining whether C obtains; in particular, the agent’s 

evidence is not positively misleading in any special way. In probabilistic terms, it seems 

natural to say that it is not certain for the agent at ti that the situation is not the one that in 

fact obtains at ti+1, although the agent might not describe the situation like that. It is not 

certain exactly where one is in the gradual process. Thus if something obtains at the later 

time, the epistemic probability at the slightly earlier time that it obtained (at that earlier 

time) was non-zero.1 That holds in particular for negative conditions: if something fails to 

obtain at the later time, the probability at the earlier time that it failed to obtain (at the 

earlier time) was non-zero. So if the probability at the earlier time that the condition 

obtained was one, and the probability then that it failed to obtain was therefore zero, by 

contraposition the condition obtains at the later time. Hence, for a condition C: 

 

(1i) If at ti the probability that C obtains is 1, then at ti+1 C obtains. 
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Once again, it must be emphasized that (1i) is merely a definition of a hypothetical 

process; it does not pretend to be a law of any sort. 

Now suppose that C is luminous in probability 1. Then, by (LP): 

  

(2i) If at ti C obtains, then at ti the probability that C obtains is 1. 

 

Suppose also: 

 

(3i) At ti C obtains. 

 

By modus ponens on (2i) and (3i): 

 

(4i) At ti the probability that C obtains is 1. 

 

By modus ponens on (1i) and (4i): 

 

(3i+1) At ti+1 C obtains. 

 

By construction of the example: 

 

(30) At t0 C obtains. 
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By repeating the argument from (3i) to (3i+1) n times, for ascending values of i from 0 to 

n-1, starting from (30): 

 

(3n) At tn C obtains. 

 

But (3n) is false by construction of the example. Thus the premises (10), …, (1n-1), (20), 

…, (2n-1) and (30) together entail a false conclusion. Consequently, not all of those 

premises are true. But it has been argued that (10), …, (1n-1) and (30) are all true. Thus not 

all of (20), …, (2n-1) are true. But all of the latter follow from C’s being luminous in 

probability 1. Thus C is not luminous in probability 1. 

In its overall structure, the argument is isomorphic to the original anti-luminosity 

argument. It provides an extremely general template for arguing that a given condition is 

not luminous in probability 1. Of course, it is not completely universal, since it does not 

apply to conditions that always or never obtain: it assumes the possibility of a very 

gradual process of change that starts with cases in which C obtains and ends with cases in 

which C does not obtain. Evidently, one that starts with cases in which C does not obtain 

and ends with cases in which C obtains would do just as well. 

Although the argument bears an obvious structural similarity to a sorites paradox, 

it does not trade on vagueness. In particular, it does not exploit any vagueness in the 

concept of probability or in the specification of condition C. 

The epistemic reading of ‘probability’ is crucial to the case for the premises (10), 

…, (1n-1). The case concerns the agent’s epistemic limitations, not objective chances. If 

natural laws and present circumstances determine that the condition obtains at one time, 
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they may still determine that it does not obtain at a very slightly later time. But epistemic 

probability should also not be confused with pure subjective probability, the agent’s 

credence or degree of belief. For all that has been said, the agent might be irrationally 

quite certain throughout the process that C obtains, in which case (1n-1) would be false if 

‘probability’ were read as degree of belief. The justification for (10), …, (1n-1) is that, 

during the gradual process, if C fails to obtain at one time then it was already not certain 

on the agent’s evidence very shortly before that C obtained then, however subjectively 

certain the agent was that it obtained. This sort of epistemic probability is far more 

relevant than pure subjective probability to any normative epistemology or philosophy of 

science that attempts to get beyond mere criteria of internal coherence.2

 

 

III 

 

Could a philosopher react to the argument of sections II by lowering the demand from 

luminosity in probability 1 to luminosity in probability x, for some real number x strictly 

between 0.5 and 1? For example, a condition C is luminous in probability 0.9 if and only 

if in every case in which C obtains, the probability that C obtains is at least 0.9. To argue 

in parallel fashion that C is not luminous in probability x, one would need in place of 

premise (1i) the stronger claim that if at ti the probability that C obtains is at least x, then 

at ti+1 C obtains. That stronger claim might be hard to support. Formally, in some models, 

at each of the times t0, …, tn the probability that one is at that time is 0.9, with the 

remaining 0.1 of probability distributed equally amongst the immediately neighbouring 
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times: such models make every condition whatsoever luminous in probability 0.9 while 

acknowledging that it is not certain exactly where one is in the gradual process. 

As already hinted, such watered-down probabilistic notions of luminosity do not 

satisfy the motivations for postulating non-trivial luminous conditions in the first place. If 

it is probable but not certain that my evidence is what I think it is, then my failure to 

proportion my beliefs to my evidence might reflect my incomplete information about my 

evidence, and so be difficult to classify as irrationality on the operational epistemologist’s 

conception. If it can be probable without being certain for one that one seems to oneself 

to see a red patch, then the rule ‘Say “I seem to myself to see a red patch now!” when and 

only when one seems to oneself to see a red patch’ cannot be part of a method in the 

operational epistemologist’s sense. Luminosity only in probabilities less than 1 has many 

of the same philosophical consequences as anti-luminosity. Let us therefore return to the 

consideration of luminosity in probability 1. 

 

 

IV 

 

The argument of section II has a problematic feature. In explaining what it is, we can start 

by using times as convenient proxies for the relevant aspects of the situations at those 

times. Then the argument in effect assumes that when one is at ti there is a non-zero 

epistemic probability c that one is at ti+1 instead. That assumption may look plausible if 

time is discrete, so that each moment has an immediate predecessor and an immediate 

successor. But if time is dense then there are infinitely many times between ti and ti+1. 
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Presumably, for each of those intermediate times t, when one is at ti, the epistemic 

probability that one is at t is at least as great as the epistemic probability that one is at ti+1. 

Thus at ti infinitely many disjoint events (incompatible propositions) have probability at 

least c, which is impossible because the probabilities of disjoint events must sum to at 

most 1. The natural assumption is rather that time is continuous and for any two times t 

and t*, the probability when one is at t* that one is at t is 0. Thus premise (1i) is too 

strong. If condition C obtains at exactly ti+1 but at no other time, then the probability at 

any time (including both ti and ti+1) that C does not obtain may still be 1. In continuous 

probability spaces, probability 1 does not even entail truth. 

 Of course, what is typically at issue is the agent’s information, not about the time 

itself, but about some aspect of the situation that changes over time, such as the agent’s 

mental state. Hence what really matters is the discreteness or continuity of that aspect 

rather than of time itself. If time is continuous, some changing aspect of the situation may 

still be discrete: for example, the number of lights that are on. If time is discrete, some 

changing aspect of the situation may still take values from a continuous space of 

possibilities; even if only finitely many of those possibilities are actually realized in a 

period of finite length, infinitely many other possibilities may be epistemically at least as 

probable from the agent’s perspective. Since many philosophically significant aspects of 

the agent’s situation at least appear to admit of continuous variation, and that appearance 

cannot simply be dismissed as illusory, we must take the problem of continuous variation 

seriously. Much of the discussion will continue to be phrased in terms of the agent’s 

information about the time, but it should not be forgotten that this is merely a convenient 

expository device. 
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We could try to fix the problem of continuous variation by permitting 

infinitesimal non-zero probabilities, since infinitely many non-zero infinitesimals can 

have a finite sum. However, such a reliance on non-standard probability theory would 

slightly weaken the argument by increasing its burden of assumptions. Let us therefore 

stick to standard real-valued probabilities and the assumptions that time is ordered like 

the real numbers and that for any two times t and t*, the probability when one is at t* that 

one is at t is 0. 

Another attempted fix would treat the probabilities in question as conditional on 

the supposition that one is exactly at one of the times t0, …, tn, while still allowing that 

time itself is continuous. However, if the (unconditional) probability that one is at a given 

ti is 0, then the (unconditional) probability that one is at one of t0, …, tn is also 0; we 

cannot in general assume that probabilities conditional on a supposition of 

(unconditional) probability 0 are well-defined. The technical problem is that the 

probability of p conditional on q P(p|q) is usually defined as the ratio of unconditional 

probabilities P(p&q)/P(q), so that probabilities conditional on a supposition of 

(unconditional) probability 0 correspond to dividing by 0. One might instead take the 

conditional probability P(p|q) as primitive and undefined, but that too would slightly 

weaken the argument by increasing its burden of assumptions. 

A more natural approach works with arbitrary brief open intervals of time. 

Henceforth all talk of times and intervals is to be understood as restricted to times and 

intervals within the closed interval [t0, tn], during which the gradual process takes place. 

The idea is that some short but non-zero length of time ε is such that at any time t* there 

is a non-zero probability that one is in any given interval of non-zero duration within ε of 
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t*: at t*, one has no certainty as to where one is in that interval. Thus if t and t** are two 

times such that t*-ε ≤ t < t** ≤ t*+ε, then the probability at t* that one is in the open 

interval (t, t**) is non-zero. In effect, the quantity ε corresponds to the length of time 

from ti to ti+1 in the discrete case, which was assumed independent of i (if the duration 

varied with i, we could simply choose a duration less than the minimum of those lengths 

for i = 0, …, n-1). Similarly, it was assumed that ε can be chosen small enough to be 

independent of t*. This assumption is entirely plausible in the sorts of example with 

which we are concerned. Over the whole gradual process there is a finite limit to the 

agent’s powers of discrimination; they do not become arbitrarily fine within the interval. 

Now suppose that a condition C* obtains throughout the interval (t, t**) (t < t**), 

and that t* is in the longer interval (t-ε, t**+ε). Hence t < t*+ε and t*-ε < t**, so max{t, 

t*-ε} < min{t**, t*+ε}. Thus C* obtains throughout the interval of non-zero duration 

(max{t, t*-ε}, min{t**, t*+ε}), which is within the interval (t*-ε, t*+ε). Consequently, by 

what was said in the previous paragraph, the probability at t* that C* obtains should be 

non-zero; as before, knowledge of the time was being used merely as a convenient proxy 

for knowledge of the conditions obtaining at the time. Now let C* be the negation of 

condition C. We have in effect derived this constraint, similar to the contraposed version 

of (1i): 

 

(1) If C obtains at no time in a nonempty interval (t, t**), then at no time in the 

interval (t-ε, t**+ε) is the probability that C obtains 1. 
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Now suppose again that C is luminous in probability 1. Consequently, by (LP), we have 

this analogue of the contraposed version of (2i): 

 

(2) If at no time in the interval (t-ε, t**+ε) is the probability that C obtains 1, then C 

obtains at no time in the interval (t-ε, t**+ε). 

 

 Combining (1) and (2) yields: 

 

(5) If C obtains at no time in a nonempty interval (t, t**), then C obtains at no time in 

the interval (t-ε, t**+ε). 

 

But in the examples with which we are concerned, C does not just clearly fail to obtain at 

tn; that time was chosen to be well within the period in which C fails to obtain, so that for 

some small but non-zero duration δ: 

 

 (60) C obtains at no time in the interval (t-δ, t). 

 

Applying (5) i times to (60) yields this: 

 

 (6i) C obtains at no time in the interval (t-δ-iε, t+iε). 

 

By taking i large enough, we therefore derive: 

 

 16



 (7)  C obtains at no time in the interval [t0, tn]. 

 

But (7) is absurd, for by construction of the example C clearly obtains at t0. Just as in 

section II, this constitutes a reductio ad absurdum of the supposition that condition C is 

luminous in probability 1. Although the argument differs in detail from that of section II, 

its spirit is recognizably the same. 

 Since the new argument requires an example in which the condition at issue fails to 

obtain throughout a small open interval, it is inapplicable to a slightly wider range of 

conditions than the original anti-luminosity argument was. Consider a condition for 

which between any two moments at which it obtains there is a moment at which it does 

not obtain and between any two moments at which it does not obtain there is a moment at 

which it does obtain (the rational and irrational numbers are so related). Such a condition 

satisfies (1) vacuously. Yet it need not violate luminosity, for on some distributions at 

every moment it has probability 1 of obtaining. But such curiosities are irrelevant to the 

original motivations for postulating non-trivial luminous conditions. The conditions at 

issue, such as seeming to see a red patch, surely can fail to obtain throughout an extended 

period. 

 The upshot of this section is that although the continuity of time slightly 

complicates the form of the argument that a given condition is not luminous in 

probability 1, it does not undermine the argument in its philosophically most significant 

applications. 
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V 

 

The continuity of time makes it even less promising to replace luminosity in probability 1 

by luminosity in a probability strictly between 0.5 and 1 than it was in the discrete case 

(discussed in section III). For consider an example in which condition C supervenes on 

an underlying quantity q which increases gradually with time; for some constant c, C 

obtains at a time t if and only if the value of q at t is less than c. Suppose for simplicity 

that at any time t* far from the beginning and from the end of the process, if the value of 

q is in fact x, then the epistemic probability that q is less than x is the same as the 

epistemic probability that q is greater than x, while the epistemic probability that q is 

exactly x itself is 0; although the assumption need not hold in all examples, it should at 

least hold in some. In those examples, the probability at t* that q is less than x and the 

probability that q is greater than x are both 0.5. Suppose that, during the gradual process, 

a long period throughout which the condition C obtains is immediately followed by a 

long period throughout which C fails to obtain. If t* is a time in the former period, but 

close to its end, so that x is less than c, then the probability at t* that C obtains is in effect 

the probability that q is either less than x or between x and c, which is 0.5 plus the 

probability that q is between x and c. By choosing t* so that x is closer and closer to c, we 

should be able to make the probability that q is between x and c closer and closer to 0. 

Consequently, for any real number ε > 0, there should be a time at which C obtains but 

the probability that C obtains is less than 0.5 + ε, in other words, a counterexample to the 

claim that C is luminous in probability 0.5 + ε, because one can choose t* close enough 
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to the end of the C period for the probability at t* that q is between x [its actual value] 

and c to be less than ε. 

 Under the foregoing assumptions, the best to be hoped for is that whenever C 

obtains, the probability that C obtains is greater than 0.5. That is slightly stronger than 

luminosity in probability 0.5, since it has ‘greater than’ in place of ‘at least’. We can 

model the stronger claim by supposing that at each time t all the probability is uniformly 

distributed over the interval (max{t0, t-ε}, min{tn, t+ε}), and that (for some particular 

condition C) whenever C obtains at a time t it obtains throughout an open interval 

containing t of length greater than ε. But even the stronger claim is strikingly weak in 

relation to the original philosophical motivation for postulating interesting luminous 

conditions. To say that when something is part of one’s evidence it is more probable than 

not for one that it is part of one’s evidence falls far short of what would be required for 

the rule ‘Proportion your confidence in a hypothesis to its probability on your evidence’ 

to count as fully operational in the usual sense. 

 

 

VI 

 

An alternative fallback from luminosity in probability 1 uses the mathematical notion of 

the expectation of a real-valued random variable, its mean value weighted by probability. 

A ‘random variable’ in this technical sense need not be perfectly random; any function 

from worlds or states to real numbers (such as the length of a given object in centimetres) 

constitutes a random variable. Let the agent’s probability distribution at time t be P. If the 
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random variable X takes values from the finite set I, then its expectation E(X) at time t is 

defined by the equation: 

 

(E)  E(X) = ∑xεI xP(X = x) 

 

If X takes values in an infinite set, then the finite sum in (E) will need to be replaced by 

an infinite sum or integral. For present purposes we may omit mathematical details and 

harmlessly assume that the expectations with which we are concerned all have well-

defined values. Now even if the agent cannot be certain what the value of X is, the 

expected value of X may still equal its actual value. Moreover, the equality may be 

systematic. If the actual value of a variable is always its expected value on the agent’s 

evidence, then the agent seems to have a special probabilistic sort of privileged access to 

that variable, potentially relevant to the theory of rationality. In such cases, the expected 

value is a perfect guide to the actual value. 

 Here is a simple example, which does not pretend to be realistic. Suppose that time 

is discrete. We model moments of time as the positive and negative integers. The variable 

T is the time. At each time t, it is equally likely that the time is any one of t-1, t and t+1, 

but certain that it is one of them: P(T = t-1) = P(T = t) = P(T = t+1) = 1/3. Consequently, 

at t, E(T) = (t-1)/3 + t/3 + (t+1)/3 = t. Thus the expected value of the time is always its 

actual value, even though one can never be certain what its actual value is. A similar 

result holds if time is ordered like the real numbers, provided that at each moment 

probability is symmetrically distributed over past and future. 
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 A tempting line of thought might seduce one into thinking that such a case cannot 

arise, at least if the agent has access to permanent features of the epistemic situation. For 

if one knows at t that the expected time is t, and that the expected time is always the 

actual time, one can deduce that the time is t, contrary to the original stipulation that at t 

the epistemic probability that the time is t is only 1/3. 

 The crucial fallacy in the tempting line of thought is the assumption that the agent is 

always in a position to know what the expectation of a variable is on their evidence. By 

the model, at t there is a 1/3 probability that the expectation of the time is t-1 and a 1/3 

probability that it is t+1 (although the expectation of the expectation of the time is still t). 

This uncertainty about the values of expectations derives from uncertainty about the 

values of probabilities: for example, at t there is a 2/3 probability that there is a 1/3 

probability that the time is t+1 (since at both t and t+1 there is a 1/3 probability that the 

time is t+1), but there is also at t a 1/3 probability that there is probability 0 that the time 

is t+1 (since at t-1 there is probability 0 that the time is t+1). 

 One might wonder what use expectations are to an agent who cannot be sure what 

their values are. But that is just to hanker again after luminosity in probability 1 (in this 

case, of the expectations), which we have already seen to be unobtainable in the cases 

that matter. If we really do face uncertainty all the way down, a prospect with which it is 

by no means easy to be comfortable, then variables whose uncertain actual values always 

coincide with their equally uncertain expected values might still have a privileged role to 

play in a sober, watered-down form of operational epistemology. At least they do not 

seem quite as badly off as variables whose actual values differ from their expected 

values. More specifically, one cannot operationalize such a rule any further by replacing 
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such a random variable in the rule with its expectation, for the replacement makes no 

difference.3

 Amongst the random variables whose expectations we sometimes wish to consider 

are expectations and probabilities themselves. Indeed, we can regard probabilities as 

special cases of expectations. For let the truth-value of A be 1 if A is true and 0 

otherwise. Then the probability of A is simply the expectation of the truth-value of A. 

Thus we shall be concerned with expectations of expectations and probabilities of 

probabilities. Such higher-order probabilities were already at issue when we considered 

uncertainty as to the value of the expectation E(T). These higher-order notions need 

delicate handling. Before proceeding further, it will therefore be prudent to develop a 

rigorous formal semantic framework for their treatment. It will keep us honest, and 

prevent us from stumbling into fallacies of equivocation in talk of probabilities of 

probabilities when many different probability distributions are in play. We can then 

investigate the significance of the anti-luminosity considerations for variables whose 

actual and expected values coincide. 

 

 

VII 

 

We first construct a formal language for the expression of higher-order probabilities and 

expectations. For simplicity, the language does not include quantifiers. Adding them 

would involve deciding on a policy for handling the tricky problem of quantifying into 

epistemic contexts such as probability operators create. However, the language does 
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include predicates and singular terms; the latter will all be understood as denoting real 

numbers. 

 We define the formulas and terms of the language by a simultaneous recursion: 

 

There are countably many atomic variables X, Y, Z, … (informally, denoting real 

numbers; they correspond to random variables). 

 

 For each rational number c there is an atomic constant [c] (informally, denoting c). 

 

 If T and U are terms then T+U is a term (+ is informally read as ‘plus’). 

 

If A is a formula then ¬A is a formula (¬ is informally read as ‘it is not the case 

that’). 

 

 If A and B are formulas then A & B is a formula (& is informally read as ‘and’). 

 

If A is a formula then V(A) is a term (V is informally read as ‘the truth-value of’). 

 

If T and U are terms then T≤U is a formula (≤ is informally read as ‘is less than or 

equal to’). 

 

 If T is a term then E(T) is a term (E is informally read as ‘the expectation of’). 
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Other truth-functors can be introduced as meta-linguistic abbreviations in the usual way. 

Moreover, ‘T=U’ abbreviates T≤U & U≤T and ‘T<U’ abbreviates T≤U & ¬U≤T 

(mathematical symbols will be used in both object-language and meta-language since 

they are being used with the same sense). The expression ‘P(A)’ for the probability of A 

abbreviates E(V(A)). The inclusion of infinitely many atomic constants is for 

mathematical convenience only. In particular applications only finitely many such 

constants are needed. 

 We must now give a model-theoretic semantics for the language. A model is a triple 

<W, Prob, F>, where W is a nonempty set, Prob is a function from members of W to 

probability distributions over W and F is a function from atomic terms to their intensions, 

functions from members of W to real numbers. Informally, W is the set of states or 

worlds; for a world wεW, Prob(w) is the epistemic probability distribution for the agent at 

w; if T is an atomic term, F(T)(w) is the value of the random variable T at w. We define 

the truth-value at w of A, val(w, A), and the denotation at w of T, den(w, T), for all 

worlds w, formulas A and terms T by another simultaneous recursion: 

 

 If T is an atomic variable, den(w, T) = F(T)(w). 

 

 If c is a rational number, den(w, [c]) = c. 

 

 If T and U are terms, den(w, T+U) = den(w, T) + den(w, U). 

 

 If A is a formula, val(w, ¬A) = 1-val(w, A). 
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 If A and B are formulas, val(w, A & B) = min{val(w, A), val(w, B)}. 

 

 If A is a formula, den(w, V(A)) = val(w, A). 

 

 If T and U are terms, val(w, T≤U) = 1 if den(w, T) ≤ den(w, U) and 0 otherwise. 

 

If T is a term, den(w, E(T)) is the expectation with respect to the probability 

distribution Prob(w) of the random variable whose value at each world xεW is 

den(x, T). 

 

To illustrate the last clause, if W is finite, then: 

  

 den(w, E(T)) = ∑xεW den(x, T)Prob(w)({x}) 

  

When W is infinite, an analogous infinite sum or integral applies. We count  

<W, Prob, F> as a model only if the expectation den(w, E(T)) is well-defined for every 

wεW and term T of the language. 

 This semantics determines truth-conditions for statements involving arbitrary 

iterations of the probability and expectation operators. It was the tacit background to 

much of the preceding discussion, and can be used to make it precise. One striking effect 

of the semantics is that the expectation of the expectation of a variable need not be its 

expectation; in other words, some expectations in some models fall outside the class of 
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random variables whose actual and expected values always coincide. Consider the 

following model <W, Prob, F>. It has three worlds; W = {u, v, w}. Informally, think of 

the worlds close to u as just u itself and v, of the worlds close to w as just v and w itself, 

and of all worlds as close to v. Then Prob maps each world to the probability distribution 

that makes all the worlds close to that one equiprobable, and assigns probability zero to 

any other world. Thus Prob(u)({u}) = Prob(u)({v}) = ½ and Prob(u)({w}) = 0; 

Prob(v)({u}) = Prob(v)({v}) = Prob(v)({w}) = 1/3; Prob(w)({u}) = 0 and Prob(w)({v}) = 

Prob(w)({w}) = ½. Treat X as the random variable with these values: den(u, X) = F(X)(u) 

= 8; den(v, X) = F(X)(v) = 4; den(w, X) = F(X)(w) = 0. It is now elementary to calculate 

that den(u, E(X)) = 6, den(v, E(X)) = 4 and den(w, E(X)) = 2. Iterating the process, we 

calculate that den(u, E(E(X))) = 5, den(v, E(E(X))) = 4 and den(w, E(E(X))) = 3. Thus the 

expectation of the expectation of X differs from the expectation of X at the worlds u and 

w, although not at v. 

 A paradox may seem to threaten. For is not one of the most elementary facts that 

students learn about calculating expectations the equation ‘E(E(X)) = E(X)’? But the 

expression ‘E(E(X))’ conceals an ambiguity. For since ‘E(X)’ is in effect a definite 

description, a question arises about its scope in the context ‘E(E(X))’. The standard 

textbook treatment assigns ‘E(X)’ wide scope in ‘E(E(X))’; informally, the expectation of 

the expectation of X is simply the expectation of that constant ‘random variable’ whose 

value is always c, where c is in fact the actual expectation of X. This reading is of course 

perfectly intelligible and legitimate; it makes the equation ‘E(E(X)) = E(X)’ trivially 

correct and does not really raise any issue of higher-order expectations or probabilities. 

The value of ‘E(E(X))’ on the wide scope reading can be calculated on the basis of a 
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single probability distribution. But equally intelligible and legitimate is a reading on 

which ‘E(X)’ has narrow scope in ‘E(E(X))’. The semantics above generates the latter 

reading and is quite natural. It is this reading which we need in order to raise genuine 

questions about higher-order expectations and probabilities, and it does not make the 

equation ‘E(E(X)) = E(X)’ trivially correct. The value of ‘E(E(X))’ on the narrow scope 

reading depends on a probability distribution over probability distributions. When we 

evaluate ‘E(E(X))’ at a world w, we evaluate a random variable ‘E(X)’ whose value at a 

world w* depends on the probability distribution at w*, not on that at w. 

 We can see the difference between the two readings in practice by considering the 

defining equation for the variance of a random variable, ‘Var(X) = E((X−E(X))2)’. 

Var(X) is supposed to measure how much X is expected to deviate from its mean: the 

dispersion of X. Consider the example in section VI of a random variable whose actual 

and expected values always coincide. Since the equation ‘E(X) = X’ is always certain to 

be true, the value of (X−E(X))2 is always certain to be 0, so the value of ‘E((X−E(X))2)’ 

on the narrow scope reading is always 0 too. But of course on the wide scope reading, the 

value of ‘E((X−E(X))2)’ at any time t, where E(X) = t, is calculated in the usual way as 

((t−1−t)2 + (t−t)2 + (t+1−t)2)/3 = 2/3. Both readings give genuine information, but they 

given different information. The wide scope reading tells us that for any number c, if c is 

in fact the expected value of X then X is expected to deviate from c by a certain amount. 

The narrow scope reading tells us that it is certain that X will nor deviate from its 

expected value. 
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 Having clarified these matters, let us apply the semantics above to determine 

whether variables whose actual and expected values always coincide constitute a useful 

fallback from probabilistic luminosity in the previous senses. 
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VIII 

 

Let us start with the simple case in which the set W of worlds is finite. The anti-

luminosity considerations trade on the possibility of constructing sorites series between 

radically different cases. Suppose that such series always exist in W, in this sense: 

 

SORITES For any w, x εW, there are w0, …, wn εW such that w = w0, x = wn and for 

0 ≤ i, j ≤ n, if |i−j| ≤ 1 then Prob(wi)({wj}) > 0. 

 

The idea is that at any world it is uncertain whether one is at that world or at one of its 

immediate neighbours in the series. In particular, for 0 ≤ i < n, Prob(wi)({wi+1}) > 0 by 

SORITES. Very roughly, one can get from any world to any world via a chain of worlds 

each of which is imperfectly discriminable from its predecessor. In this sense, one world 

is imperfectly discriminable from another if and only if it is not certain for the agent at 

the latter world that the former does not obtain. 

 In this setting we can now reconstruct the argument against luminosity. Suppose 

that we are interested in the value of a term T, and that its expected and actual values 

always coincide. That is: 

 

(#) For all wεW, den(w, T) = ∑xεW den(x, T)Prob(w)({x}) 

 

Since W is finite, den(w, T) attains a maximum value max(T) at some world w. Let 

MAX(T) be the set of worlds at which T attains this maximum, {xεW: den(x, T) = 
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max(T)}. Suppose that yεMAX(T), and that the world z is imperfectly discriminable from 

y: Prob(y)({z}) > 0. Consequently, by (#): 

 max(T) = den(y, T) = ∑xεW den(x, T)Prob(y)({x})  

   ≤ max(T)(1-Prob(y)({z}) + den(z, T)Prob(y)({z})  

   = max(T) – (max(T)−den(z, T))Prob(y)({z}). 

Thus (max(T)−den(z, T))Prob(y)({z}) ≤ 0. But den(z, T) ≤ max(T) and Prob(y)({z}) > 0, 

so den(z, T) = max(T), so zεMAX(T). Thus any world imperfectly discriminable from a 

world in MAX(T) is itself in MAX(T). Consequently, any chain of imperfect 

discriminability that starts in MAX(T) remains wholly in MAX(T). Hence, by SORITES, 

any world in W can be reached from a world in MAX(T) by a chain of imperfect 

discriminability. Therefore, every world in W is in MAX(T). So T attains its maximum at 

every world in W: in other words, T is constant. 

 What we have proved is that, in the finite case, SORITES implies that a random 

variable whose expected and actual values always coincide is trivial, in the sense that its 

value cannot vary across worlds. But that rules out the variables in which we are most 

interested, since they do differ in value between worlds (or states) that are joined by a 

series of imperfectly discriminable intermediaries. In particular, the agent’s evidence and 

mental state vary over such sorites series. We cannot model learning from experience 

with respect to a random variable that is constant across all epistemic worlds, for then its 

expectation on the evidence will also be constant across all such worlds. Consequently, at 

least when the state space is finite, it is useless to postulate an epistemically privileged set 

of variables whose actual and expected values always coincide. Those variables would 
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exclude everything that can be learnt from new experiences that develop gradually out of 

old ones. 

 A similar argument sometimes applies even when the set of worlds is countably 

infinite, although the condition that the term T attains a maximum value at some world is 

no longer automatically satisfied. The probability distributions required for SORITES 

may also be less natural in that case, since one cannot give the same non-zero probability 

to infinitely many worlds. If the set of worlds is uncountably infinite, SORITES must 

fail, because at most countably many worlds are imperfectly discriminable in the relevant 

probabilistic sense from any given world, so at most countably many worlds are linked 

by a finite chain of imperfect discriminability to a given world. Thus the infinite case 

requires separate consideration. 

 An easy generalization is to cases in which, although there are infinitely many 

worlds, the term T takes values only from a finite set. A more useful generalization is to 

all cases in which T attains a maximum value without certainty that it does so: 

 

UNCMAX For some wεW: for all xεW, den(x, T) ≤ den(w, T), but 

  Prob(w)({x: den(x, T) < den(w, T)}) > 0. 

 

By the second conjunct of UNCMAX, Prob(w)({x: den(x, T) + 1/n ≤ den(w, T)}) > 0 for  

some natural number n.4 Let Prob(w)({x: den(x, T) + 1/n ≤ den(w, T)}) be p; thus p > 0. 

Then  
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 den(w, E(T)) ≤ den(w, T)(1-p) + (den(w, T) – 1/n)p = den(w, T) – p/n < den(w, T). 

Thus it is false at w that the actual and expected values of T coincide. Similarly, they fail 

to coincide when T attains its minimum without certainty that it does so. 

 A central application of the preceding result concerns cases in which T is itself a 

probability, so that E(T) is in effect the expectation of an expectation. If T attains the 

value 1 at some world, that is of course its maximum. Thus if an event can be certain 

without being certainly certain, the actual and expected values of the probability of that 

event do not always coincide.5 One might suppose certainty to imply certainty of 

certainty, but that is to suppose certainty to be luminous in probability 1, which by earlier 

results we must expect it not to be unless the standard for certainty is set almost 

impossibly high. Of course, some philosophers will retort that certainty is an (almost) 

impossibly high standard for empirical beliefs. If some event cannot attain probability 1, 

but can attain any probability less than 1, then the preceding argument does not apply to 

it. However, an event might also attain a maximum probability less than 1. For example, 

let w and w* be similar but not perfectly similar worlds, and consider the probability of 

the condition C that one is at a world more similar to w than w* is. Other things being 

equal, that probability will normally attain a maximum at w itself. However, at w, there 

may well be a positive probability that one is at a world slightly different from w at which 

the probability that C obtains is less than maximal; then UNCMAX is satisfied. 

Consequently, at w the expected probability that C obtains is less than the actual 

probability. As already noted, not even expectations have the epistemic privilege that 

their expected value is always their actual value. 
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 It might still be tempting to think that even if probabilities and expectations lack a 

perfect epistemic privilege, they are still epistemically more privileged than what they are 

probabilities or expectations of. Thus one might regard the sequence of a random 

variable, its expectation, the expectation of its expectation, the expectation of the 

expectation of its expectation, … as tending in the direction of ever greater but never 

perfect epistemic privilege. The trouble with this idea is that the increase in epistemic 

privilege is typically achieved by the washing out of empirical evidence. This 

phenomenon is vivid when the number of worlds is finite. Suppose that it is, and that 

SORITES holds: any two worlds are linked by a chain of imperfectly discriminable pairs. 

Let T be any random variable. Then it is provable that the sequence T, E(T), E(E(T)), … 

converges to the same limit whichever world one is at.6 The original variable T may 

encode significant information about which world one is at, differentiating some worlds 

from others, but the process of taking iterated expectations gradually wipes out those 

differences. Thus the tendency in the direction of epistemic privilege is a tendency in the 

direction of failing to learn from experience. 

 As usual, the picture is more complex when the number of worlds is infinite, but it 

is doubtful that the extra complexities make very much difference to the overall upshot 

for epistemology. Under realistic assumptions, taking iterated expectations still tends to 

wipe out empirical differences and thereby undermine learning from experience. 
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IX 

 

The more one tries to privilege something epistemically, the less it can discriminate 

between different states of the world. Of course, empirical evidence must have some 

epistemic privilege, otherwise there would be no point for the epistemologist in 

distinguishing it from what it is evidence about. But if it has too much epistemic 

privilege, then it no longer discriminates between initially possible outcomes as learning 

requires. The notion of evidence is held in place, not altogether comfortably, by these 

opposing pressures. The conception of evidence as the total content of one’s knowledge 

(the equation E = K) is a compromise of just the required kind. 

 The considerations of this paper suggest that the anti-luminosity arguments of 

Knowledge and its Limits are robust. They are not symptoms of an isolated pathological 

quirk in the ordinary concept of knowledge, ‘the epistemology of the stone age’. Rather, 

they can be replicated from a probabilistic starting-point, and reflect the general 

predicament of creatures with limited powers of discrimination in their attempt to learn 

from experience. As epistemologists, we need the concept of probability, but the idea that 

our pervasive fallibility requires that it replace the concept of knowledge is itself the 

product of residual infallibilistic assumptions, which attribute imaginary epistemic 

privileges to probability itself. We are fallible even about the best descriptions of our own 

fallibility. The concept of knowledge is adapted to just such a predicament. In particular, 

it can demarcate the evidence that conditions evidential probabilities. 

 By contrast, the operational epistemologist’s attempt to work without such ‘impure’ 

concepts results in a futile psychologization of the concept of evidence, on which one’s 
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evidence is reduced to one’s present subjective states. That concept of evidence diverges 

drastically from what we need to understand the objectivity of the natural sciences, yet 

still fails to achieve the kind of luminosity which the psychologization aimed to achieve. 

Like other movements driven by unrealistic idealism disguised as tough-mindedness, the 

operationalization of epistemology would destroy what it sets out to reform.7
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Notes 

 

 

1 One must exclude trivial indexical ways of specifying conditions such as ‘The 

condition that the time is now’ which refer to different conditions at different points in 

the process. 

 

2 Some hard-line subjective Bayesians will object at this point that the notion of 

Jeffrey conditionalization suffices for operational epistemology. For criticism see 

Williamson 2000: 216-219. 

 

3 Williamson 2000: 230-237 explores uncertain probabilities within a framework 

based on the concept of knowledge. 

 

4 Since den(w, E(V(T<[den(w, T)])) and den(w, E(V(T+[1/n]≤[den(w, T)])) are well-

defined by definition of a model, the probabilities in the argument and UNCMAX are 

also well-defined. The argument that Prob(w)({x: den(x, T) + 1/n ≤ den(w, T)}) > 0 for  

some n assumes that Prob is countably additive. If countably non-additive probability 

distributions are allowed, that derived condition should be used in UNCMAX instead. 

 

5 In a series of papers, Dov Samet (1997, 1998, 2000) has investigated constraints in 

epistemic logic related to those examined here. In particular, he considers the ‘averaging’ 

axiom that the actual and expected probabilities of an event must coincide (which he 
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takes from Jeffrey 1992 and Skyrms 1980) and shows that in the finite case it implies 

certainty that if the probability of an event has a given value then it is certain that it has 

that value. Roughly speaking, Samet’s results concern the hypothesis that the axiom is 

universally satisfied, whereas the present inquiry is into the hypothesis that a particular 

event satisfies it. Williamson (2000: 311-315) proves that on a frame for epistemic logic 

in which one can know without knowing that one knows or fail to know without knowing 

that one fails to know, unconditional prior probabilities do not always coincide with the 

prior expectations of posterior probabilities, where posterior probabilities at a world are 

the results of conditionalizing prior probabilities on the total content of what one knows 

at that world. That framework is more restrictive than the present one. To take the 

simplest case, consider a model with just two worlds, w and x. On the present framework, 

the event {w} could have probability 2/3 at w and probability 1/3 at x. That cannot 

happen within the framework of Williamson 2000, since conditionalization is either on 

the whole of {w, x}, which makes no difference, or on a singleton set, in which case all 

probabilities go to 1 or 0: thus no event ever has a probability strictly between 0 and 1 

other than its prior probability (of course, that result does not generalize to models with 

more than two worlds). Since that more restrictive framework is justified by the 

knowledge-centred approach, it cannot be assumed here. 

 

6 Proof: One can consider the worlds as states in a Markov chain, with Prob(i)({j}) as 

the one-step transition probability from state i to state j. Let pij(n) be the transition 

probability that one is at j after n steps starting from j. Let E0(T) = T and En+1(T) = 

E(En(T)). Then, by induction on n, for any n and iεW, den(i, En(T)) = ∑jεW den(j, T)pij(n). 
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But by SORITES the Markov chain is irreducible and aperiodic, so by a standard result 

about Markov chains (Grimmett and Stirzaker 2001: 232), pij(n) converges to a limit that 

is independent of i as n goes to infinity. Consequently, den(i, En(T)) also converges to a 

limit that is independent of i as n goes to infinity. This result subsumes the earlier result 

that if E(T) = T all worlds in a finite model with SORITES then T is constant. 

 

7 I thank the Centre for Advanced Study at the Norwegian Academy of Science and 

Letters for its hospitality during the writing of much of this paper. Some of the material 

was presented in various earlier versions at classes in Oxford, at a conference on 

contextualism at the University of Stirling, the 2006 Formal Epistemology Workshop at 

Berkeley, the Jean Nicod Institute in Paris, the University of Bristol, the Graduate Center 

of City University New York and the University of California at Santa Barbara; I thank 

the audiences for helpful comments. 
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