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0. In general, the truth of a proposition entails very little about its epistemic status. It need 

not be known, or even knowable. It is at least not known to be false, since only truths are 

known, but that is not saying much. It may be true even though it is almost certain on the 

evidence that it is false, for evidence can be highly misleading. 

 Some propositions about one’s present epistemic state are often regarded as 

exceptions to the general compatibility of truth and low epistemic status. Perhaps the 

most famous example is the KK principle, also sometimes called “positive introspection”. 

It says that if one knows a truth p, one knows that one knows p. Thus the truth of the 

proposition that one (presently) knows p is supposed to entail that the (present) epistemic 

status of the proposition that one knows p is at least as good as knowledge. However, it is 

widely, although not universally, acknowledged that the KK principle is false, and not 

just for the boring reason that one can know p without having formed the belief that one 

knows p. One can know p, and believe that one knows p, without knowing that one 

knows p, because one is not in a strong enough epistemic position to know that one 
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knows p (Williamson 2000: 114-30). ‘I know p’ can be lower than p in epistemic status. 

But how much lower in epistemic status can ‘I know p’ be than p itself? 

 We can grade epistemic status in terms of evidential probabilities. If one knows p, 

how improbable can it be, on one’s own present evidence, that one knows p? One 

conclusion of this paper is that the probability can sink arbitrarily close to 0. At the limit, 

the probability on one’s evidence of p can be 1 while the probability on one’s evidence 

that one knows p is 0. The difference between the probabilities can be as large as 

probabilistic differences can go. 

 One argument for such a conclusion follows a traditional way of arguing against 

the KK principle, by using familiar examples that support some form of externalism 

about knowledge (Lemmon 1967). For instance, the unconfident examinee answers 

questions on English history under the impression that he is merely guessing. In fact, his 

answers are correct, and result from lessons on it that he has completely forgotten he ever 

had (Radford 1966). The example can be so filled in that it is extremely improbable on 

the examinee’s evidence that he had any such lessons, or any other access to the relevant 

knowledge of English history; nevertheless, he does know the historical facts in question. 

That description of the example may well be right. Dialectically, however, it has the 

disadvantage that those of a more internalist bent may simply deny that the examinee 

knows. This paper develops a more systematic, structural way of arguing for the realistic 

possibility of knowing when it is extremely improbable on one’s evidence that one 

knows, a way independent of specifically externalist judgments about cases. 

 On the resulting view, one’s evidence can be radically misleading about one’s 

own present epistemic position. Since the rationality of an action depends on one’s 
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epistemic position, one’s evidence can be radically misleading about the rationality of the 

various actions available to one. Such phenomena will be used to cast light on some 

epistemological puzzles. If our pre-theoretic assessments of particular cases neglect the 

possibility of knowing while it is almost certain on one’s evidence that one does not 

know, we may misclassify those cases as counterexamples to principles that are in fact 

sound. 

 

1. It is useful to explore the issues within a framework taken from the standard possible 

worlds semantics for epistemic logic, introduced by Hintikka (1962). Such a formal 

framework keeps us honest, by making it straightforward to check whether our 

descriptions of examples are consistent and what their consequences are, and by 

facilitating the identification of structurally appropriate models. Of course, we must also 

consider whether the mathematical models we use are realistic on their intended 

epistemic interpretation in the relevant respects. It will be argued below that the respects 

in which they are idealized are consistent with the uses to which the models are here 

being put. They resemble physicists’ idealization of planets as point masses for purposes 

of some calculations. 

 We recall some basic features of possible worlds models for epistemic logic. For 

present purposes, we can make two convenient simplifications. First, we need only 

consider one agent at a time. Although important analogues of the failure of the KK 

principle arise for the interpersonal case too (Williamson 2000: 131-4), we can ignore 

such complications here. Second, we can ignore the strictly semantic aspect of possible 
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world models, by discussing propositions rather than sentences; the resultant structures 

are frames. 

 Given those simplifications, a frame is just an ordered pair <W, R>, where W is a 

set and R a binary relation on W (a set of ordered pairs of members of W). Informally, we 

think of W as the set of relevant worlds or maximally specific states of affairs. 

Correspondingly, we think of the subsets of W as propositions; a proposition p⊆ W is true 

in a world w if and only if w∈p. Obviously the conjunction of two propositions is their 

set-theoretic intersection, the negation of a proposition is its complement in W, and so on. 

It does not matter for these purposes whether the worlds could really have obtained; their 

significance may be epistemic rather than metaphysical. 

Whereas the account of propositions is encoded in the frame by W, all the 

epistemology is packed into R. Informally, we think of R as a relation of epistemic 

possibility between worlds: a world x is epistemically possible in a world w (wRx) if and 

only if, for all one knows in w, one is in x, in other words, whatever one knows in w is 

true in x (where ‘one’ refers to the relevant agent and the present tense to the relevant 

time).  For p⊆ W, we define: 

 Kp = {w∈W: ∀ x∈W (wRx → x∈p)} 

Informally, Kp is to be the proposition that one knows p. Thus one knows p if and only if 

p holds in every state of affairs consistent with what one knows. As an attempt to analyse 

knowledge in other terms, that would be circular: but its intended purpose is more 

modest, simply to unpack the account of knowledge encoded in the frame by R. 

On its intended reading, the definition of K presupposes that one knows 

something if and only if it is true in all epistemic possibilities for one, that is, in all 
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worlds in which whatever one knows is true. Notoriously, this involves assumptions 

about the agent’s logical omniscience. It does so in two ways. First, any treatment of K as 

a function from propositions to propositions automatically requires that if p is the same 

proposition as q then Kp is the same proposition as Kq. Since propositions are being 

treated as sets of worlds, this means that if p is true in the same worlds as q, then Kp is 

true in the same worlds as Kp. Moreover, since truth in a world respects the usual truth-

functions ― a conjunction is true in a world if and only if all its conjuncts are true in that 

world, the negation of a proposition is true in a world if and only if the original 

proposition is not true in that world, and so on ― truth-functionally equivalent 

propositions are identical, so both are known or neither is; in particular, every truth-

functional tautology is known if any is. That first form of logical omniscience is 

independent of the specifics of the right-hand side of the definition. The second form 

depends on those specifics, but unlike the first applies whenever premises p1, …, pn entail 

a conclusion q (p1∩…∩pn⊆ q), even if the conclusion is not identical with any of the 

premises; it says that, in those circumstances, knowing the premises entails knowing the 

conclusion (Kp1∩…∩Kpn⊆ Kq), for if each premise is true in all worlds in which 

whatever one knows is true, the conclusion is also true in all worlds in which whatever 

one knows is true. Neither closure principle for knowledge is conditional on the agent’s 

having carried out the relevant deduction. The idea is rather that knowing that 2 + 2 = 4 

is, ipso facto, knowing Fermat’s Last Theorem — or, to take an example that strictly 

concerns truth-functional equivalence, knowing p → p is, ipso facto, knowing 

((q → r) → q) → q. 
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A few philosophers, such as Robert Stalnaker (1999: 241-73), are drawn to an 

heroic defence of logical omniscience as a surprising literal truth — or rather as a not 

surprising one, since by its own lights we knew it all along. On more standard views of 

propositional attitudes, logical omniscience is an extreme idealization. Someone can 

know one tautology without knowing them all. For present purposes we may assume the 

idealization to be harmless, for if the total evidence of a logically omniscient agent can be 

radically misleading about their epistemic position, our own abject failure of logical 

omniscience will not save us from the same fate. Roughly speaking, the crucial point 

turns out to be that bad logic cannot compensate for bad eyesight. We will return to this 

issue towards the end of the paper. 

An effect of full logical omniscience is that for each world w there is the strongest 

proposition known by the agent in w, R(w), in the sense that it is known in w and entails 

every proposition that is known in w. We can define R(w) = {x∈W: wRx}. Then a 

proposition p is known in w if and only if p follows from R(w); more formally, w∈Kp if 

and only if R(w)⊆ p, by definition of K. R(w) encapsulates what one knows in w. 

One constraint on the epistemic possibility relation will hold for all the models of 

interest below. R is reflexive (wRw); every world is epistemically possible in itself, 

because knowledge entails truth: whatever one knows in a world is true in that world, for 

all one knows in w one is in w. Consequently, w∈R(w) for any world w, and Kp⊆ p for 

any proposition p. 

 Counterexamples to the KK principle have a well-known formal structure in such 

frames for epistemic logic. Here is a toy example. W is a three-member set {x, y, z}: 
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x  ―――――――――― y  ―――――――――― z  

 

In the diagram, R holds between worlds just in case they are identical or neighbours; thus 

R is both reflexive and symmetric. R is not transitive, because xRy and yRz but not xRz. 

The strongest things known in each world are these: R(x) = {x, y}; R(y) = {x, y, z}; R(z) = 

{y, z}. In effect, if one is at one of the endpoints, what one knows is that one is not at the 

other endpoint; if one is at the midpoint, one knows nothing non-trivial about one’s 

position. Now let p = {x, y}. Then Kp = {x}: one knows p in x because p is true in all 

worlds epistemically possible in x; one does not know p in y because p is false in z, which 

is epistemically possible in y. Consequently KKp = K{x} = {}: one does not know Kp in x 

because Kp is false in y, which is epistemically possible in x. Thus the KK principle fails 

in x, because Kp is true and KKp false there. 

 As is well known, the non-transitivity of R is necessary and sufficient for a frame 

to contain a counterexample to the KK principle. For consider any frame <W, R>. 

Suppose that R is non-transitive. Thus for some x, y, z in W, xRy and yRz but not xRz. By 

definition, KR(x) is true in x. KR(x) is not true in y, because yRz and R(x) is not true in z 

(since not xRz). Therefore KKR(x) is not true in x, because xRy. Thus the KK principle 

fails in x. Conversely, suppose that there is a counter-example to the KK principle in 

<W, R>, say in x∈W. Thus for some p⊆ W, Kp is true in x and KKp false in x. By the 

latter, for some y∈W, xRy and Kp is false in y, so for some z∈W, yRz and p is false in z. 

But not xRz, otherwise Kp is false in x, contrary to hypothesis. Thus R is non-transitive. 

 Of course, the existence of such non-transitive frames for epistemic logic does not 

by itself establish that there are counterexamples to the KK principle on its intended 
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interpretation, for it remains to be shown that these mathematical structures represent 

genuinely possible epistemic situations. Before we turn to such matters, however, we 

must first enhance the frames with probabilistic structure, so that we can model issues 

about the probability on one’s evidence that one knows something.   

 

2. In adding probabilities to a frame <W, R>, the account of evidential probability in 

Williamson (2000: 209-37) will be followed. We start with a prior distribution Probprior 

over propositions. Thus we can take a probabilistic epistemic frame to be an ordered 

triple <W, R, Probprior>, where W and R are as before and Probprior is a probability 

distribution defined over subsets of W. 

In the frames considered in detail below, Probprior always takes the particularly 

simple form of a uniform distribution over the subsets of a finite set W, in the sense that 

every world has the same probabilistic weight as every other world. Thus, where |p| is the 

cardinality of p⊆ W, Probprior(p) = |p|/|W|. It is not suggested that non-uniform or infinite 

probability distributions are in any way illegitimate. However, if a non-uniform 

distribution were used to illustrate the epistemic phenomena in question, they might look 

like artefacts of gerrymandering. Similarly, if W were infinite, the phenomena might look 

like paradoxes of infinity, given the complications of probability distributions over 

infinite sets. It is therefore best to use a uniform prior distribution over a finite space 

where possible, to keep the argument as above-board and straightforward as we can. 

 For such uniform prior distributions, every nonempty subset of W has nonzero 

probability. We can therefore unproblematically define prior conditional probabilities by 
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ratios in the usual way: Probprior(p | q) = Probprior(p∩q)/Probprior(q) whenever q is 

nonempty and so Probprior(q) > 0. 

The evidential probability of a proposition in a world w is identified with its 

probability conditional on one’s total evidence in w. One’s total evidence in w can in turn 

be identified with the total content of what one knows in w (Williamson 2000: 184-208). 

In a frame <W, R>, the total content of what one knows in w is just R(w). Since w∈R(w), 

R(w) is always nonempty, so probabilities conditional on R(w) are always well-defined in 

the frames of most interest. So if Probw(p) is the evidential probability in w of a 

proposition p: 

 

Probw(p) = Probprior(p | R(w)) = Probprior(p∩R(w))/Probprior(R(w)) 

 

Thus in finite uniform frames, the evidential probability in w of p is simply the proportion 

of epistemically possible worlds in w in which p is true. 

 We can locate propositions about evidential probabilities in the frame. For 

instance, the proposition [Pr(p) = c] that the evidential probability of p is the real number 

c is simply {w∈W: Probw(p) = c}, and similarly for inequalities involving evidential 

probabilities. Thus propositions about evidential probabilities will themselves have 

evidential probabilities.  

 Let <W, R> be the three-world toy example from the previous section. As before, 

p is {x, y}, so Kp is {x}. Let Probprior be the uniform distribution for W, so Probprior({x}) = 

Probprior({y}) = Probprior({z}) = 1/3. Hence Prx(Kp) = ½, since Kp is true in just one of the 

two worlds that are epistemically possible in x. Thus in x, even though one knows p, the 
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probability on one’s evidence that one knows p is no more than 50-50. To say that the 

probability on one’s evidence that one knows p is just ½ is already to say something 

much worse about the epistemic status for one of the proposition that one knows p than 

merely to say that one does not know that one knows p. 

 Let <W, R, Probprior> be any probabilistic epistemic frame where W is finite, R is 

reflexive and Probprior is uniform. Suppose that the KK principle fails in the frame. So for 

some w∈W and p⊆ W, Kp is true in w while KKp is false in w. Hence for some x∈R(w), 

Kp is false in x. Since Probprior({x}) > 0, Probw(Kp) < 1. Thus wherever the KK principle 

fails in such models, one knows something although the probability on one’s evidence 

that one knows it is less than 1. By contrast, if the KK principle holds in a frame, if Kp is 

true in w then KKp is true in w, so R(w)⊆ Kp, so Probw(Kp) = 1: whenever one knows 

something, the probability on one’s evidence that one knows it is 1. Indeed, in such 

frames knowing p is equivalent to its having probability 1 on one’s evidence; Kp = 

[Pr(p)=1]. Thus the KK principle is equivalent in these circumstances to the principle 

that if the evidential probability of p is 1, then the evidential probability that the 

evidential probability of p is 1 is itself 1. 

 In frames where W is finite, R is reflexive and Probprior is uniform, how low can 

Probw(Kp) be when Kp is true in w? When one knows something, how low can the 

probability that one knows it be on one’s evidence? At least formally, the probability can 

be any rational number whatsoever strictly between 0 and 1, so it can be arbitrarily close 

to 0. To see this, let m/n be any rational number such that 0 < m/n < 1, where m and n are 

positive integers, so 0 < m < n. We construct a model of the required kind with some 

worlds in which Kp is true while the evidential probability of Kp is m/n. The idea is 
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simple: take the three-world toy model used to illustrate the failure of the KK principle in 

section 1, multiply the world x by m, yielding m mutually indiscernible copies, and the 

world y by n−m, yielding n−m mutually indiscernible copies. Thus W = {x1, …, xm, ym+1, 

…, yn, z}. R is reflexive and symmetric; for any i, i*, j, j* where 1 ≤ i, i* ≤ m < j, j* ≤ n: 

Rxixi*, Rxiyj, Ryjyj*, and Ryjz, but not Rxiz; diagrammatically: 

 

x1    ym+1 

:    : 

xi  ―――――――――― yj  ―――――――――― z  

:    : 

xm    yn 

 

If p = {x1, …, xm, ym+1, …, yn}, for 1 ≤ i ≤ m, R(xi) = p. Thus Kp = {x1, …, xm}. 

Consequently, while in xi Kp is true, it is true in only m of the n epistemically possible 

worlds. Since Probprior is uniform, Probxi(Kp) = m/n, as required. In particular, for m = 1, 

Probxi(Kp) = 1/n, which goes to 0 as n goes to infinity. By using non-uniform prior 

probability distributions or infinite sets of worlds we could construct similar models in 

which Kp is true while actually having evidential probability 0, but such refinements are 

unnecessary here.1 

 In the model just illustrated, m/n is the highest evidential probability that Kp 

attains anywhere, since Probyj(Kp) = m/(n+1) and Probz(Kp) = 0. Thus the proposition 

[Pr(Kp)≤m/n] is true at every world in the model. Consequently, so is the proposition 

Kk[Pr(Kp)≤m/n], where k is a natural number and Kk means k iterations of K (thus K0q is 
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q and Kk+1q is KkKq). In other words, knowing p is compatible not just with the 

probability on one’s evidence that one knows p being close to 0, but even with knowing, 

and knowing that one knows, and knowing that one knows that one knows, … that the 

probability on one’s evidence that one knows p is close to 0.   

 We have added evidential probabilities to epistemic models in a way that 

embodies several strong assumptions. In particular, one’s total evidence was equated with 

the total content of one’s knowledge, and probabilities on that evidence were calculated 

by conditionalizing a prior probability distribution on it. These assumptions are 

defensible (Williamson 2000), but can of course be challenged. However, someone who 

denied that they always hold would not be thereby committed to rejecting their present 

applications. For they are being used to argue that a specific phenomenon can occur, not 

that it always occurs. The former requires only that the relevant models can be 

instantiated by genuine epistemic phenomena, not that all genuine epistemic phenomena 

are similar in structure to those models. Indeed, the assumptions at issue should make it 

harder, not easier, to construct models with the target phenomenon, which involves a sort 

of tension between knowing and the evidential probability of knowing. For what is most 

distinctive about the present approach is the intimate connection it postulates between 

evidential probabilities and knowledge. Thus the assumptions cramp attempts to arrange 

the tension between them, by keeping them tightly related. By contrast, an approach that 

allowed more independence between evidential probabilities and knowledge would have 

correspondingly more scope to arrange the tension as an artefact, by varying the 

evidential dimension independently of the knowledge dimension or vice versa. Similarly, 

allowing non-uniform prior probability distributions or infinite sets of worlds would give 
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far more scope for arranging odd probabilistic phenomena, for example by giving special 

weight to ‘bad’ worlds. If the target phenomenon occurs even under the unhelpful 

restrictive conditions postulated by the present approach to evidential probabilities, it is 

robust. A less restrictive approach could hardly rule out the models already constructed. 

The challenge to opponents is to motivate an approach that is more restrictive in some 

relevant way. 

 So far, however, we have been working at the level of formal models, without any 

positive argument that they represent genuinely possible epistemic situations. We now 

turn to that task, and provide a much more realistic, only slightly schematized description 

of a mundane type of epistemic situation that exemplifies the target phenomenon.  

 

3. Imagine an irritatingly austere modernist clock. As so often happens, the designer 

sacrificed genuine functional efficiency for the sake of an air of functional efficiency. 

The clock consists of a plain unmarked circular dial with a single pointer, the hour hand, 

which can point at any one of n equally spaced, unmarked positions on the perimeter of 

the face. You wake up after a long sleep with no clue to the time other than the clock. 

You judge the time by looking at the clock, which is some distance away. Alternatively, 

in order to finesse the complications resulting from the movement of the hand, we could 

suppose that you have only a photograph of the clock, and must judge the time when it 

was taken. 

To go into more detail, we measure distances between positions by the minimum 

number of steps needed to go from one to the other (clockwise or anti-clockwise). 

Number the positions 0, .., n−1 clockwise from the top. Since n is very large, the time 
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period corresponding to each position is tiny, perhaps a few microseconds. For 

simplicity, we individuate ‘worlds’ (mutually exclusive and jointly exhaustive relevant 

circumstances) just by the position of the hand. Thus there are exactly n worlds w0, .., 

wn−1, where in wi the hand points at position i. We measure distances between worlds by 

the corresponding distances between positions. An interval of positions corresponds to a 

time interval; it is a nonempty proper subset of the set of positions such that the hand 

goes through every position in the set without going through any position not in the set 

(intervals are ‘connected’). An endpoint of an interval is a member next to a non-

member. Any interval with at least two members has two endpoints. An interval with an 

odd number of members has a unique midpoint, equidistant from its endpoints. Given the 

natural one-one correspondence between worlds and positions, the terms ‘interval’, 

‘endpoint’ and ‘midpoint’ can be applied just as well to sets of worlds as to sets of 

positions. 

 Now imagine that you are looking at the dial from a fixed point of view 

equidistant from all points on the perimeter. You can make some discriminations between 

positions, and correspondingly between worlds, but the difference between neighbouring 

positions is well below your threshold of discrimination. We may assume that your 

capacity to discriminate between positions depends only on their relative distance; thus if 

world w is at least as close to world x as world y is to world z, then you can discriminate 

w from x only if you can also discriminate y from z (psychologically, this is doubtless an 

over-simplification — for example, we may be better at discriminating close to the 

vertical and to the horizontal than in between — but such complications are not essential 

to the nature of knowledge). Consequently, if you are in fact in world w, the worlds that 
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for all you know you are in (the epistemically possible worlds) are those at most h steps 

from w, for some natural number h; h is greater than 0, otherwise your discrimination 

would be perfect. We can regard h as the width of the margin for error you require in 

order to know something in the model (Williamson 2000: 125-34); it is a constant with 

respect to the given model. More formally, let R be the epistemic accessibility relation; 

then for all worlds w and x, wRx if and only if the distance between w and x is at most h. 

Thus R has both reflective and rotational symmetry. For any world w, R(w) (the set of 

worlds epistemically possible in w) is not the whole of w, otherwise you could not make 

any discriminations at all. Thus R(w) is an interval with w as its midpoint and 2h + 1 

members. For instance, if the distance h around the circumference is five minutes by the 

clock, R(w) corresponds to the period starting five minutes before the time w and ending 

five minutes after w.2 For vividness, we will discuss your knowledge of what the time is, 

but under the assumption that the only source of doubt concerns the position of the hand; 

we assume for simplicity that the accuracy of the clock is given. 

The formal epistemic model deals only in coarse-grained propositions, sets of 

worlds, regardless of how they are linguistically or mentally expressed. However, the 

model is hard to apply unless we get more specific about that. We are interested in 

knowledge expressible by sentences like ‘The time is 4 o’clock’, not by sentences like 

‘The time is now’, even if the two sentences express the same proposition when uttered at 

4 o’clock. A less direct form of cheating consists in using an indexical to exploit, to a 

greater or lesser degree, the position of the hand (‘The time is that’). We therefore restrict 

the relevant modes of temporal reference in what follows ‘The time is’ to ‘objective’ ones 

that do not exploit the temporal location of the thought or utterance or the spatial location 
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of the hand. For example, R(w) might be expressed by a sentence like ‘The time is 

between 3.55 and 4.05’ (never mind whether it is a.m. or p.m., or what day it is).3     

We can prove that R(w) is known only at w. For suppose that R(w) is known at a 

world x. Since R(x) is the strongest proposition known at x, R(x)⊆ R(w). But R(x) and 

R(w) have the same finite number of members, 2h + 1. Thus R(x) = R(w). So the midpoint 

of R(x) is the midpoint of R(w); that is, x = w. Hence KR(w) is true in w and in no other 

world. 

Now add evidential probabilities to the model as above, with a uniform prior 

distribution, Probprior. Since KR(w) is true in just one of the 2h + 1 worlds in R(w), its 

evidential probability in w, Probw(KR(w)), is 1/(2h+1). By increasing the number of 

positions round the dial while keeping your discriminatory capacities fixed, we can 

increase h without limit, and thereby make the evidential probability in w that one knows 

R(w) as small as desired, even though R(w) is in fact known in w. 

 As in section 2, the evidential probability in the model that the proposition is 

known is not only small, but known to be small, and known to be known to be small, and 

known to be known to be known to be small, and …. For since KR(w) is true in only one 

world, and for any world x R(x) has 2h + 1 members, Probx(KR(w)) is always at most 

1/(2h + 1). Thus the proposition [Pr(KR(w))≤1/(2h + 1)] is true in every world in the 

model. Consequently, the proposition Kk[Pr(KR(w))≤1/(2h + 1)] is also true in every 

world. In other words, one can have any number of iterations of knowledge that the 

probability of R(w) is at most 1/(2h + 1). 

 One cannot avoid these structural results by tightening the conditions for 

knowledge, short of complete scepticism. For reducing the range of truths known 
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amounts in this setting to increasing the margin for error h. But, given the symmetry of 

the situation, the argument holds for any positive margin for error ― unless h is made so 

large that R(w) is the whole of W, which is in effect to say that one learns nothing by 

looking at the dial.4 

 Even denying the equation of evidence with knowledge would make very little 

difference to the argument. It would presumably involve postulating one margin for error 

h for knowledge and a distinct margin for error h* for evidence: the worlds compatible 

with the total content of one’s evidence in w would be those within a distance h* of w; h* 

is nonzero too, for more than one position is compatible with one’s evidence. That would 

not affect the argument that KR(w) is true in no world except w. Hence the probability on 

one’s evidence in w of KR(w) would be 1/(2h* + 1). By increasing the number of 

positions for the dial, one can make h* arbitrarily high, and therefore the probability on 

one’s evidence in w that one knows R(w) arbitrarily low. 

 We can even generalize the argument from knowledge to rational belief (or 

justified belief), while keeping an independent standard for evidence (as in the previous 

paragraph). Unlike knowledge, rational belief is supposed not to require truth. 

Standardly, epistemic logic for rational belief differs from epistemic logic for knowledge 

just in replacing the principle that what is known is true by the principle that what it is 

rational to believe is consistent. For an operator for rational belief (rather than 

knowledge), a world x is accessible from a world w if and only if whatever it is rational 

for one to believe (rather than whatever one knows) at w is true at x. Technically, the 

constraint that the accessibility relation be reflexive is relaxed to the constraint that it be 

serial, in the sense that no world has it to no world. The effect is that the T axiom  
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Kp → p is weakened to the D schema Jp → ¬J¬p (writing J for ‘it is rational for one to 

believe that’ or ‘one is justified in believing that’). Of course, dropping the constraint that 

accessibility be reflexive does not imply adding the constraint that it be non-reflexive. In 

the present case, since we may build into the example that it is quite clear to one from 

general background information that one is not suffering from any illusion or systematic 

distortion of perception; one’s only problem is the limit on one’s powers of perceptual 

discrimination. Thus, as before, for any worlds w, x, y and z in the model, if w is at least 

as close to x as y is to z (in number of steps around the circumference) then x is accessible 

from w if z is accessible from y. As before, that implies that for some natural number h** 

(perhaps distinct from h and h*), constant across the model, one world is accessible from 

another if and only they are at most h** steps apart. In particular, every world is 

accessible from itself, not by force of any general constraint about rational belief, but 

simply as a feature of this specific epistemic situation. Rational belief sometimes behaves 

like knowledge. Thus the structure is just as in the previous paragraph, with the upshot 

that it can be rational for one to believe a proposition even though it is almost certain on 

one’s evidence that it is not rational for one believe that proposition. 

 If the condition for rational belief were relaxed from ‘in all accessible worlds’ to 

‘in most accessible worlds’, the inference from Jp & Jq to J(p & q) would fail. For ‘in 

most accessible worlds’ will be equivalent to ‘in at least k accessible worlds’ for some 

given natural number k greater than h** and less than 2h**  + 1. Let w be a world, and p 

be a subset with exactly k members of the set q of worlds accessible from w, including 

the two endpoints x and y of q. Thus Jp is true at w. We may assume that the total number 

of worlds is well over 4h**, since otherwise one’s eyesight in the model is so bad that 
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when the hand is pointing at twelve o’clock, it is not even rational for one to believe that 

it is pointing between eleven o’clock and one o’clock. Then from any world other than w, 

x and y are not both accessible, so not all members of p are accessible, so fewer than k 

members of p are accessible, so it is false that most members of p are accessible. Thus w 

is the only world at which Jp is true, the only world at which it is rational for one to 

believe p. From here the argument proceeds as before. 

The foregoing results should still hold on reasonable variations in the prior 

probability distribution R(w) that make it slightly non-uniform, for KR(w) will still be 

true only in w, and so its probability (the probability that one is in w) will still be low in w 

and a fortiori everywhere else too. Similarly, making the allowable space of positions for 

the hand continuous rather than discrete should not make much difference. One would 

also expect the target phenomenon often to arise in comparable ways when the epistemic 

accessibility relation R takes different forms, for example by being linear or multi-

dimensional. Nor do psychologically more realistic descriptions of knowledge seem to 

raise the probability on one’s evidence that one knows the strongest relevant proposition 

one can know, when one does in fact know it. Thus the target epistemic phenomenon 

seems robust. 

Reflection suggests a generalization of the example. One key structural feature of 

the model is this: 

 

(*) For all worlds w, x: R(x)⊆ R(w) only if x = w. 
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That is, shifting from one world to another (as from w to x) always opens up new 

epistemic possibilities as well as perhaps closing down old ones. Some worlds are close 

enough to x to be epistemically possible in x but not close enough to w to be 

epistemically possible in w. This is a plausible feature of real-life examples of inexact 

knowledge. As we move through logical space, our epistemic horizon moves with us. 

New epistemic possibilities enter our epistemic horizon as others depart. In fact, this 

more limited feature may do in place of (*): 

 

(**) Some world w is such that for all worlds x: R(x)⊆ R(w) only if x = w. 

 

For, given (**), w is still the only world in which R(w) is known, so the evidential 

probability of KR(w) will tend to be small in w, given the subject’s imperfect powers of 

discrimination, even though KR(w) is always true in w. In particular, the circular 

geometry of the example is not necessary for the main conclusions: it is just that the 

symmetry of the circle considerably simplifies the model and the arguments. 

Note that if at least one verifying world w for (**) has R to a world other than 

itself (in other words, one is not omniscient in that world), then R is non-transitive. For 

suppose that wRx, x ≠ w and R(x)⊆ R(w) only if x = w. Then for some world y, xRy but 

not wRy, so transitivity fails. 

 The existence of natural structural generalizations such as (*) and (**) provides 

some further confirmation of the robustness of the phenomenon of knowing that is highly 

improbable on the subject’s own evidence.5 
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4. One restrictive feature of the model in section 3 is that the width of the margin for 

error required for knowledge is in effect treated as beyond doubt, since it is built into the 

structure of the model. More specifically, since the model has only one world in which 

the clock hand has a given position, worlds can differ over what positions are 

epistemically possible for the hand only by differing over which position it in fact has. 

Yet it is overwhelmingly plausible that there is inexactness in our knowledge of the width 

of the margin for error in addition to the inexactness in our knowledge of the position of 

the hand. If so, then in more realistic models the worlds epistemically possible in a given 

world w will include some in which the margin for error differs slightly from that in w, 

while the position of the hand is the same. In particular, in w a world x is epistemically 

possible in which the margin for error is slightly less than in w. In such cases we may 

have R(x)⊆ R(w) even though x ≠ w. Pictorially: a sphere may contain a sphere of slightly 

smaller radius whose centre is a slight distance from the centre of the first sphere. Then 

whatever is known in w is also known in x. In such cases, (*) and even (**) may fail.6 

To construct models with a variable margin for error is not hard. But doing so 

without making ad hoc choices is much harder. In effect, one must specify higher-order 

margins for error distinct from the first-order margins for error. There is no obvious non-

arbitrary way of determining the relation between the widths of the margins at different 

orders. By contrast with the simpler case in section 3, it is not clear which models one 

should be considering. As a consequence, it is harder to distinguish mere artefacts of the 

model from more significant results. 

Nevertheless, in a setting with variable margins for error, one can still give an 

informal argument for a conclusion similar to that already reached in the case of constant 
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margins. Let H(w) be the strongest proposition known in w about the position of the hand 

(or whatever other non-epistemic fact is relevant). Thus H(w) may be true at worlds other 

than w; its truth-value remains constant across worlds where the position of the hand is 

the same, even if the epistemic facts differ. Let h be the first-order margin for error (the 

one relevant to knowledge of the position of the hand) in w. Thus H(w) is true in exactly 

those worlds where the distance of the hand position from that in w is at most h. Let 

ME<w be true in just those worlds in which the first-order margin of error is less than h, 

ME>w be true in just those worlds in which the first-order margin for error is greater than 

h, and ME=w be true in just those worlds in which the first-order margin for error is equal 

to h. These three possibilities are mutually exclusive and jointly exhaustive. Therefore, 

by definition of conditional probability: 

 

(1) Probw(KH(w)) = Probw(KH(w) | ME<w).Probw(ME<w) + 

Probw(KH(w) | ME=w).Probw(ME=w) + 

    Probw(KH(w) | ME>w).Probw(ME>w) 

 

In any world x in ME>w some world is epistemically possible in which H(w) is false, 

because the first-order margin for error in x is some k > h, and a sphere of radius k cannot 

be contained in a sphere of radius h. Thus ME>w is incompatible with KH(w), so 

Probw(KH(w) | ME>w) = 0. Consequently, (1) simplifies to: 

 

(2) Probw(KH(w)) = Probw(KH(w) | ME<w).Probw(ME<w) + 

Probw(KH(w) | ME=w).Probw(ME=w) 
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Since Probw(KH(w) | ME<w) ≤ 1, (2) yields: 

 

(3) Probw(KH(w)) ≤ Probw(ME<w) + Probw(KH(w) | ME=w).Probw(ME=w) 

 

For simplicity, we may reasonably assume that Probw(ME<w) = Probw(ME>w), that is, that 

the first-order margin for error is equally likely to be less or greater than its actual value. 

Since Probw(ME<w) +  Probw(ME=w) + Probw(ME>w) = 1, Probw(ME<w) = 

(1−Probw(ME=w))/2. Therefore, by (3): 

 

(4) Probw(KH(w)) ≤ (1−Probw(ME=w))/2 + Probw(KH(w) | ME=w).Probw(ME=w) 

 

But Probw(KH(w) | ME=w) is in effect the probability of KH(w) in the case considered 

previously of a constant margin for error (h). From that case we have at the very least that 

Probw(KH(w) | ME=w) < ½. Consequently, by (4): 

 

(5) Probw(KH(w)) ≤ (1−Probw(ME=w))/2 + Probw(ME=w)/2 = ½  

 

In other words, although you in fact know H(w) in w, it is no more probable than not on 

your evidence in w that you know H(w). 

Even if we slightly relax the simplifying assumption that Probw(ME<w) = 

Probw(ME>w), the probability on the evidence in w that H(w) is known will not rise 

significantly above evens. Indeed, the probability may well be close to zero. For if the 
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width of the first-order margin for error varies only slightly (as a proportion of h) over the 

worlds epistemically possible in w, then Probw(KH(w) | ME<w) will be close to 

Probw(KH(w) | ME=w). Therefore, by (2), Probw(KH(w)) will be at most only slightly 

greater than Probw(KH(w) | ME=w).Probw(ME<w) + Probw(KH(w) | ME=w).Probw(ME=w) = 

Probw(KH(w) | ME=w).Probw(ME≤w). But, as noted above, Probw(KH(w) | ME=w) is in 

effect the probability of KH(w) in the case already considered of a constant margin for 

error. That probability goes to zero as the number of hand positions increases. Hence 

Probw(KH(w)) may well be close to 0 even when the width of the margin for error varies. 

But even without that stronger conclusion, the result of the informal argument is enough 

for present purposes. Uncertainty about the width of the margin for error does not 

undermine the possibility of knowing something without its being probable on one’s 

evidence that one knows it. 

 

5. We can elaborate the clock example with variable margins for error by filling in more 

of the internal mechanism in a way that reinforces the original moral. Suppose that the 

hand has, in addition to its real position, an apparent position constituted by a state of the 

agent. We can model each world as an ordered pair <j, k>, where j is the real position of 

the hand and k is its apparent position, j and k both being drawn from the same set of 

positions. Correspondingly, we will speak of real and apparent times in the obvious way 

(recall that the accuracy of the clock is given). This is of course still an over-

simplification, but that is the nature of modelling. We do not assume that at <j, k> you 

believe that the time is k. You may just believe that it is within a particular time interval 

that contains k. We assume that that the same general perceptual mechanism is operating 
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at all worlds, and that the real position of the hand is not the only factor in determining its 

apparent position, indeed, the perceptual mechanism puts no upper limit on the size of the 

‘error’, the distance between j and k. All pairs are treated as worlds. However, a pair 

<j, k> where j and k are very far apart may still be suitably remote from the actual world, 

in ways to be explained. 

To define the model, we must specify when <j, k>R<j*, k*>. To keep things 

simple, and to make a generously unrealistic concession to an old-fashioned 

foundationalist conception of knowledge, we may even treat the agent as omniscient 

about the appearances they are currently entertaining, by the stipulation that 

<j, k>R<j*, k*> only if k = k*, in other words, if the apparent time is k then the agent 

knows that the apparent time is k. Thus all that remains is to specify when <j, k>R<j*, k>. 

If j = k, the appearance is perfectly accurate, but of course it does not follow that 

the agent knows exactly what time it is. As already noted, the agent may not even have a 

belief as to exactly what time it is. However, on general grounds of symmetry we may 

assume that at <j, j> what the agent knows about the time is that it is within a given 

number h of steps from j. The value of h will be determined by features of the visual 

mechanism, such as the long-run probability of a given distance between the real and 

apparent positions of the hand, which for simplicity we assume to be invariant under 

symmetries (rotations and reflections) of the circle. Let d(j, j*) be the distance between 

positions j and j* as measured by the number of steps on the shortest path round the 

circumference between them (so d is a metric in the standard topological sense). Then 

<j, j>R<j*, j> if and only if d(j, j*) ≤ h. Since the agent does not know at <j, j> exactly 

what time it is, h ≥ 1. 



 26 

Now what remains is to specify when <j, k>R<j*, k> if j ≠ k. The natural 

assumption is that what the subject knows at <j, k> about the time is in effect that it is 

within a given distance of k, the known apparent time. When j = k the distance is h. As 

the distance between j and k increases, the required maximum distance of j* from k will 

have to increase at least as fast, at least eventually, otherwise <j*, k> would sometimes be 

inaccessible from <j, k> when j* = j, so that R would be non-reflexive, contradicting the 

factiveness of knowledge. The obvious way to combine this desideratum with the 

condition already fixed for the case when j = k is by setting the required maximum 

distance of j* from k as h + d(j, k). The greater the distance between real and apparent 

positions, the less the agent knows. 

We have thus arrived at the rule that <j, k>R<j*, k*> if and only if k = k* and 

d(j*, k) ≤ h + d(j, k). By contrast, when one defines an accessibility relation RB for 

(blameless) belief rather than knowledge in such a model, one will presumably make it 

independent of the real position j. For example, <j, k>RB<j*, k*> if and only if k = k* and 

d(j*, k) ≤ h: what one believes in <j, k> is true in just those worlds in which the real 

position is close enough to its apparent position in <j, k> and its apparent position is 

exactly the same as in <j, k>. Given those definitions of R and RB, knowledge entails 

belief, for RB(<j, k>)⊆R(<j, k>), so at <j, k> if the agent knows p then R(<j, k>)⊆ p, so 

RB(<j, k>)⊆ p, so the agent believes p. In this simplified model, whenever the apparent 

position matches the real position, belief coincides with knowledge: RB(<j, j>) = 

R(<j, j>). Any failure of match between appearance and reality generates some beliefs 

that fail to constitute knowledge, for when j ≠ k, d(j, k) > 0 so not R(<j, k>)⊆RB(<j, k>), 

so RB(<j, k>) is believed but not known at <j, k>. When the failure of match is not too 
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great, it even generates true beliefs that fail to constitute knowledge, for 

<j, k>∈RB(<j, k>) when 0 < d(j, k) ≤ h, so RB(<j, k>) is true at <j, k>: all the agent’s 

beliefs there are true, but not all of them constitute knowledge. 

The extra error term d(j, k) in the definition of the accessibility relation for 

knowledge but not for belief is exactly what makes the former but not the latter factive in 

this model. R is reflexive because d(j, k) ≤ h + d(j, k). RB is non-reflexive because 

d(j, k) > h when the mismatch between real and apparent positions is too great; in that 

case the agent falsely believes RB(<j, k>) at <j, k>. This difference is one manifestation of 

the way in which what is known at <j, k> (R(<j, k>) depends on the real position j while 

what is believed (RB(<j, k>)) does not. But it is not the only manifestation. For, as just 

seen, it also generates cases of true belief that fail to constitute knowledge. Moreover, the 

beliefs are justified, at least in the sense of being blameless, since what is believed is 

exactly what would be known if the reality matched the given appearance ((RB(<j, k>) = 

R(<k, k>)). Thus they are Gettier cases: justified true beliefs that are not knowledge (in 

the relevant sense of ‘justified’). Where the failure of match is not too great, there are no 

associated false beliefs, so the cases are more similar to fake barn cases than to the 

original Gettier cases (Gettier 1963, Goldman 1976). That the model correctly predicts 

such distinctive features of knowledge is some confirmation that it is on the right lines. 

The extra error term d(j, k) makes knowledge depend on reality for more than just truth. 

As in the previous model, the accessibility relation for knowledge is non-

transitive, so the KK principle fails. For instance, if d(j, j*) = h, d(j*, j**) = 1 and 

d(j, j**) = h + 1, then <j, j>R<j*, j> since d(j, j*) = h = h + d(j, j), and <j*, j>R<j**, j> 



 28 

since d(j, j**) = h + 1 ≤ 2h = h + d(j*, j), but not <j, j>R<j**, j> since d(j**, j) = h + 1 > 

h = h + d(j, j). 

What is new is that the accessibility relation for knowledge is also non-

symmetric, unlike those in the previous models. For instance, if j is more than h steps 

from k, then <j, k>R<k, k> (because d(k, k) = 0 ≤ h + d(j, k)) but not <k, k>R<j, k> 

(because d(k, j) > h = h + d(k, k)). We can interpret the example thus. The world <k, k> is 

a good case, in which appearance and reality match. The world <j, k> is a corresponding 

bad case, in which the appearance is the same as in the good case but drastically fails to 

match reality. The good case is accessible from the bad case: if you are in the bad case, 

everything you know is true in the good case. The bad case is inaccessible from the good 

case: if you are in the good case, something you know is false in the bad case. Sceptical 

scenarios involve just such failures of symmetry. Everything you know in the sceptical 

scenario is true in ordinary life, but something you know in ordinary life is false in the 

sceptical scenario (see Williamson 2000: 167, 226). The non-symmetry affects what 

logical principles hold in the model. For example, symmetry corresponds to the B 

principle that if something obtains then you know that for all you know it obtains 

(p → K¬K¬p). That principle holds in the previous models but fails in this one. For 

example, if you are in the bad case, it does not follow that you know that for all you 

know you are in the bad case. Rather, if you are in the bad case, then for all you know 

you are in the good case, in which you know that you are not in the bad case. 

Just as before, cases occur of very improbable knowing. For instance, R(<j, j>) 

comprises just the 2h + 1 worlds of the form <j*, j> such that d(j*, j) ≤ h. But whenever 

j ≠ j*, R(<j*, j>) comprises more than 2h + 1 worlds of the form <j**, j> such that 
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d(j**, j) ≤ h + d(j*, j) > h; thus not R(<j*, j>)⊆R(<j, j>), so KR(<j, j>) is false at <j*, j>. 

Consequently, although KR(<j, j>) is true at <j, j>, Prob<j, j>(KR(<j, j>)) = 1/(2h + 1). In 

the world <j, j>, one knows the proposition R(<j, j>), but it is almost certain on one’s 

evidence that one does not know that proposition. 

The evidential improbability of knowing R(<j, j>) is reflected in one’s failure to 

believe that one knows it. For if 1 ≤ d(j*, j) ≤ h then <j*, j> is doxastically accessible 

from <j, j>, although in <j*, j> one does not know R(<j, j>), so in <j, j> one does not 

believe that one knows R(<j, j>). Of course, in <j, j> one also lacks the false belief that 

one does not know R(<j, j>), for since <j, j> is doxastically accessible from itself all 

one’s beliefs in <j, j> are true. Since in <j, j> one knows R(<j, j>), and knowledge entails 

belief, one believes R(<j, j>). Thus one violates the contentious axiom that whenever one 

believes p, one believes that one knows p.7 

In this model, one’s beliefs depend only on what one is omniscient about, the 

appearances (for RB(<j, k>) = {<j*, k>: d(j*, k) ≤ h, which is independent of j), so one is 

omniscient about them too. Thus if one believes p, one knows that one believes p, and if 

one fails to believe p, one knows that one fails to believe p. In particular, therefore, in 

<j, j> one knows that one both believes R(<j, j>) and fails to believe that one knows 

R(<j, j>). A fortiori, one knows that one fails to know that one knows R(<j, j>). That is 

self-conscious modesty. It is not irrationality, for, as already noted, in <j, j> one believes 

only those things that one knows.  

What is the relation between this new model and the one in section 3? We can 

regard the new worlds as refinements of the old ones, or conversely the old worlds as 

equivalence classes of the new ones. More specifically, let |<j, k>| be the equivalence 
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class of <j, k>, so |<j, k>| = |<j*, k*>| if and only if j = j* (the identity of the old world 

depends on the real position of the pointer, not on its apparent position). We define a 

natural accessibility relation R|| on the equivalence classes by the rule that wR||w* if and 

only if each member of w has access (R) to at least one member of w* (if you are 

somewhere in w, then for all you know you are somewhere in w*). Then R|| turns out to 

coincide with the old accessibility relation on the old worlds, in the sense that 

<j, k>R|||<j*, k*| when and only when d(j, j*) ≤ h. For suppose that d(j, j*) ≤ h. A 

representative member of |<j, k>| is <j, k**>. But by the triangle inequality for d (one of 

the axioms for a metric space): 

d(j*, k**) ≤ d(j*, j) + d(j, k**) = d(j, j*) + d(j, k**) ≤ h + d(j, k**) 

Hence <j, k**>R<j*, k**>. But <j*, k**>∈|<j*, k*>|, so <j, k>R|||<j*, k*|, as required. 

Conversely, suppose that d(j, j*) > h. A representative member of |<j*, k*>| is <j*, k**>., 

If <j, j>R<j*, k**> then d(j, j*) ≤ h + d(j, j) = h, which is a contradiction, so not 

<j, j>R<j*, k**>. But <j, j>∈|<j, k>|, so not <j, k>R|||<j*, k*|, as required. In this sense, 

we have recaptured the old model as a coarsening of the new one. 

 Of course, the new model does not reproduce every feature of the old one. For 

instance, as already seen, the B principle no longer holds. Rather, the new model corrects 

some unrealistic features of its predecessor. In the old model, the set of epistemically 

accessible worlds around a world w forms an interval of constant size 2h + 1, no matter 

where w is in the model. That corresponds to the assumption that it is always known 

exactly how much is known, even though it is never known exactly what is known. That 

assumption is obviously a gross idealization. In the new model, the set of epistemically 

accessible worlds around a world <j, k> forms an interval of size 2(h + d(j, k)) + 1, which 
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varies with the degree of mismatch between appearance and reality, which is at least 

somewhat more realistic. Unlike the old model, the new one represents the possibility of 

illusion and error as well as of limited discrimination. Nevertheless, with all these extra 

refinements, and perfectly known appearances, the new model still predicts cases of 

knowing while it is virtually certain on one’s evidence that one does not know. The 

phenomenon is robust. 

 For simplicity, the available apparent positions of the hand have been assumed to 

coincide with the available real positions. We could lift this assumption and suppose that 

fewer apparent positions than real positions are available. This would complicate the 

arguments but require only minor refinements of their conclusions.  

 Philosophers of an internalist bent tend to restrict one’s evidence to appearances. 

In this model, the effect is that a world <j*, k*> is consistent with one’s internalist 

evidence in <j, k> if and only if k* = k. Thus any position whatsoever for the pointer is 

consistent with one’s internalist evidence in any world. On that view, cases of improbable 

knowing become even more extreme, since <j, j> is the only world in the model in which 

R(<j, j>) is known: making more worlds consistent with the evidence merely drives down 

the probability of KR(<j, j>) on the evidence. A more radical internalist move would be 

to make <j*, k*> epistemically accessible from <j, k> whenever k* = k. But that would 

yield total scepticism about the external world. For let p be any proposition purely about 

the external world, in the sense that whether it is true in a world <j*, k*> depends only on 

the real position j* and not on the apparent position k*. Then p is known in a world <j, k> 

only if it is trivial, that is, true in every world in the model. For if p is known in <j, k> by 

the radical internalist standard then p is true in any world epistemically accessible by that 
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standard from <j, k>, so in particular p is true in <j*, k>; by hypothesis the truth of p in 

<j*, k> depends only on j*, not on k, so p is also true in <j*, k*>. But j* and k* were 

arbitrary, so p is true in every world in the model, as claimed. 

 A still more realistic version of the model would reject the assumed omniscience 

about one’s own beliefs and appearances. The inner world is not much easier to know 

than the outer. I find it at least as hard to introspect the time according to my phenomenal 

clock as to see the time according to a real clock. Such refinements do nothing to 

undermine the phenomenon of improbable knowing. Moreover, they reintroduce the 

phenomenon of improbable rational belief, as discussed in section 3. 

 

6. Examples of the kind considered in previous sections make trouble for accounts of 

propositional justification on which a sufficient condition for having such justification to 

believe p is that the probability of p on one’s evidence exceeds a threshold less than 1.  

For in such cases one would then have propositional justification to believe the Moore-

paradoxical conjunction p & ¬Kp. Consider a world w in which one knows p but 

Probw(Kp), the probability on one’s evidence in w that one knows p, is less than 1/n, so 

Probw(¬Kp) > (n−1)/n. Since one knows p, Probw(p) = 1. By elementary probability 

theory, it follows that Probw(p & ¬Kp) > (n−1)/n. Thus by letting n go high enough, we 

can find a case in which the probability on one’s evidence of the Moorean conjunction 

exceeds the given threshold and the supposedly sufficient condition for justification is 

met. But it is not plausible that one can have justification to believe a conjunction of the 

form of “It’s raining and I don’t know that it’s raining”. In effect, this point is a sort of 

abstract generalization of the objection to probabilistic acceptance rules from Moore 
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paradoxes in lottery cases (“My ticket won’t win and I don’t know that it won’t win”), 

but it avoids their reliance on the specific assumption that one is not in a position to know 

that one’s ticket won’t win. 

 However, the phenomenon at issue does not merely raise problems for particular 

philosophical views. More importantly, it raises problems for rational agents as such, not 

just for those rational agents who choose to theorize about rational agents. Suppose, for 

instance, that it is rational for Hamlet to perform some action A if he knows p and not 

rational for him to perform A otherwise (given the relevant background circumstances, 

such as his other attitudes), and that those facts about rationality are clear to him.8 

Suppose also that although Hamlet knows p, it is almost certain on his evidence that he 

does not know p. Should Hamlet do A? Since he knows p, it is rational for him to do A. 

However, since it is almost certain on his evidence that he does not know p, it is almost 

certain on his evidence that it is not rational for him to do A. It is therefore very tempting 

to say that after all it is not rational for him to do A. But to say that would be to contradict 

the conditions of the example. Thus there is pressure to say instead that the example 

cannot really arise, that if it is almost certain on one’s evidence that one does not know p 

then one does not really know p. We have already seen that such pressure should be 

resisted, since it will not stop short of scepticism. Nevertheless, its effect when we 

consider particular cases may be to make us withdraw true knowledge ascriptions, under 

the false impression that they have been defeated by the negative evidence. 

 The difficulty cannot be met by insisting that what it is rational for Hamlet to do 

depends on what it is rational for him to believe, not on what he knows. For we have 
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already seen that parallel to the phenomenon of improbable knowing is a phenomenon of 

improbable rational believing. 

  By a parallel argument, just as it can be rational for one to do A even though it is 

extremely improbable on one’s evidence that it is rational for one to do A, so it can 

happen that one should do A, even though it is extremely improbable on one’s evidence 

that one should do A. 

 Of course, we have no general difficulty with the idea that a claim may be true 

even though it is almost certain on someone’s evidence that it is false ― for example, 

when the claim states the actual outcome of a long sequence of unobserved coin tosses. 

What we find harder to accept is the possibility of the same combination when the claim 

ascribes knowledge to the very person whose evidence is in question at that very time. 

Their strong evidence that they do not know p seems incompatible with whatever sort of 

reliance on p is mandated by their knowing p. But the apparent incompatibility is an 

illusion, which can seriously distort our assessment of particular ascriptions of knowledge 

and with it our epistemological theorizing. 

 The phenomenon that we find hard to accept is an extreme case of anti-

luminosity, the failure of non-trivial states to satisfy the constraint that whenever one is in 

them one is in a position to know that one is in them (Williamson 2000: 93-113). In 

evidential terms, when luminosity fails one is in a state S even though it is not certain on 

one’s evidence that one is in S. In the present case, S is the state of knowing p. But the 

phenomenon at issue is stronger than a mere failure of luminosity, since it involves being 

in S even though it is almost certain on one’s evidence that one is not in S. 
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 If we do resist the sceptical pressure, and acknowledge the possibility of the 

phenomenon, then we must regard Hamlet’s problem above as a genuine problem for 

him, an instance of a more general practical problem for agents acting on inexact 

knowledge, not as something to be dissolved by epistemological redescription. The flat-

footed solution is clear from the conditions of the example: it is rational for Hamlet to do 

A if and only if he knows p, and he does know p, so it is rational for him to do A. The 

trouble is that he has strongly misleading evidence about those facts. But that does not 

mean that they are not facts after all; it just means that he has a good excuse ― not 

justification ― for not having done A.9 Hamlet is in a bad predicament, but why should 

we expect an epistemological theory to tell us that rational agents cannot get into bad 

predicaments, or trust it if it does so? Decision theory cannot show that such epistemic 

phenomena occur; at best it can help us act in a world where they do occur. 

 A related difficulty for rational agents is that in any frame in which one can know 

without knowing that one knows, or not know without knowing that one does not know, 

failures occur of the synchronic reflection principle that one’s evidential probability for p, 

conditional on one’s evidential probability for p’s being c, is itself c. Although the details 

are slightly more complicated, a similar situation holds for rational belief in place of 

knowledge, in a sense in which there are rational false beliefs (see Appendix). 

 We must check these general comments by examining a specific case in more 

detail. That is the business of the following final section. 
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7. Competent deduction is a way of extending our knowledge, as in mathematical 

reasoning. A natural formulation of the underlying principle is this form of multi-premise 

closure: 

 

MPC If one believes a conclusion on the basis of competent deduction from premises 

each of which one knows, one knows the conclusion. 

 

For present purposes we can leave the phrase ‘on the basis of competent deduction’ 

vague, and assume that something in the spirit of MPC is correct.10 

 MPC faces a strong challenge from cases of reasoning from many premises, each 

with a small independent risk of error, where those risks combine into a large risk of error 

for the conclusion. Such situations arise most simply when the conclusion is the 

conjunction of the premises, since then the conclusion entails the premises and any error 

in a premise involves an error in the conclusion; the deduction of the conclusion from the 

premises also takes a particularly elementary form. Suppose that each premise is true, so 

the conclusion is true too. We may further suppose that, according to ordinary standards, 

one knows each premise. For example, each premise may state a separate matter of 

particular historical fact that one has carefully checked. To deny that one knows a given 

premise would look like extreme scepticism. From those propositions one has 

competently deduced their conjunction and believes it on that basis. By MPC, one 

thereby knows the conclusion. Nevertheless, much past experience may show that there is 

a small non-zero rate of error for such carefully checked historical claims, on the basis of 

which it is almost inevitable that the long conjunction contains several false conjuncts. 
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Thus one’s belief in the conjunction may seem to have too strong a risk of error to 

constitute knowledge. This is a variant of the Preface Paradox, adapted to knowledge. 

On a fallibilist conception of knowledge, it seems, the risk of error for any one 

premise may be within the threshold for knowledge, while the risk of error for the 

conclusion is outside the threshold; thus MPC fails. By contrast, on an infallibilist 

conception, knowledge requires that there be no risk of error, rather than at most a small 

risk, so MPC may hold; but such infallibilism seems to lead to scepticism. Alternatively, 

one might try to preserve MPC by postulating some sort of variation across contexts of 

utterance in the reference of ‘know’, or some loss of knowledge of the premises through 

the very act of deducing the conclusion.11 

 Once we recognize the phenomenon of knowing when it is almost certain on 

one’s evidence that one fails to know, we can see a possible diagnosis of the problem 

cases for MPC which allows us to keep MPC while neither falling into scepticism nor 

postulating truth-conditions for ‘knowledge’-ascriptions of any non-standard kind. One 

does indeed know each premise, without knowing that one knows it. Since one believes 

the conclusion on the basis of competent deduction from the premises, by MPC one also 

knows the conclusion, although without knowing that one knows it. For each premise, it 

is very probable on one’s evidence that one knows it. However, it is very improbable on 

one’s evidence that one knows every premise. Given that one knows the conclusion (the 

conjunction) only if one knows every premise, it is very improbable on one’s evidence 

that one knows the conclusion. Since we are tempted to conceive knowing as at least 

somewhat luminous, we are tempted to deny that one knows the conclusion.12 
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 We can give a formal epistemic model of that description. As noted in section 1, 

such a model automatically validates not just MPC but logical omniscience, an 

unrealistically strong version of multi-premise closure that does not even require the 

agent to have carried out the relevant deductions, competently or otherwise. As a positive 

argument for MPC, it might well be accused of both begging the question and proving 

too much. However, its role here is different. It is being used to defuse an objection to 

MPC, by showing that even on the assumption of the strongest possible version of multi-

premise closure, one would predict the occurrence of epistemic phenomena that it is very 

tempting to misinterpret along the lines of the objection as counter-examples to multi-

premise closure. In particular, if we treat ascriptions of knowledge as defeated by a low 

probability of knowing, but not by a high probability short of 1 of knowing, on the 

subject’s evidence, then we shall tend to judge that the subject knows each conjunct 

without knowing the conjunction, even though the conditions for MPC are satisfied; we 

are deceived by the false appearance of a counterexample to MPC.13 

 Here are the details of such a model.14 For worlds we use n-tuples of numbers 

drawn from the set {0, 1, …, 2k}, where n is the number of premises (conjuncts) and k is 

a large natural number. Thus there are (2k+1)n worlds. The n components of a world 

represent its locations on n independent dimensions of a state space. The ith dimension is 

the one relevant to the ith premise pi. Let the ith component of the n-tuple w be wi, and 

the world just like w except that its ith component is m be w[i|m], so w[i|m]i = m and 

w[i|m]j = wj if i ≠ j. Let pi be true in w if and only if wi > 0. Let x be epistemically 

possible in w (wRx) if and only if for all i, |wi–xi| ≤ k, that is, w and x do not differ by ‘too 

much’ in any of their respective components. In effect, a margin for error is applied to 
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each of the n dimensions separately. The relation R is obviously reflexive and symmetric. 

We can easily check that for any world w, pi is known (Kpi is true) in w if and only if 

wi > k.15 Similarly, we can check that pi is known to be known (KKpi is true) in w if and 

only if wi > 2k; hence pi is not known to be known (KKpi is not true) in any world in this 

model. In particular, in the world <2k, …, 2k>, each premise pi is known and none is 

known to be known. 

As usual, the prior probability distribution is uniform: for any world w, 

Probprior({w}) = 1/(2k+1)n. We must check that the model makes the n dimensions 

probabilistically independent. For any given i, a proposition q is i-based if and only if for 

all worlds x and y, if xi = yi then q is true in x if and only if q is true in y (1 ≤ i ≤ n). That 

is, whether an i-based proposition is true in a world depends only on the ith component of 

that world. In particular, pi is an i-based proposition. Obviously, the negation of any i-

based proposition is also i-based, as is any conjunction of i-based propositions. We can 

also prove that whenever q is an i-based proposition, so is Kq.16 Thus Kpi and KKpi are 

also i-based propositions. Then we can prove that whenever for each i qi is an i-based 

proposition, q1, …, qn are mutually probabilistically independent on the evidence in any 

world w, in the usual sense that the probability (on the evidence in w) of their conjunction 

is the product of the probabilities (on the evidence in w) of the conjuncts.17 Although a 

model could have been constructed in which the evidence at some worlds establishes 

epistemic interdependences between the different dimensions, for present purposes we 

can do without such complications. In particular, p1, …, pn are mutually probabilistically 

independent on the evidence in any world, as are Kp1, …, Kpn. But, on the evidence in the 

world <2k, …, 2k>, for any given i, the probability that pi is known is k/(k+1).18 By 
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probabilistic independence, the probability of the conjunction Kp1 ∩…∩ Kpn is 

(k/(k+1))n. That is the probability that each conjunct is known. But, by the logical 

omniscience built into the model, knowing a conjunction (K(p1 ∩…∩ pn)) is equivalent to 

knowing each conjunct. Thus the probability on the evidence in <2k, …, 2k> that the 

conjunction p1 ∩…∩ pn is known is also (k/(k+1))n. For fixed k, this probability becomes 

arbitrarily close to 0 as n becomes arbitrarily large. Thus, for suitable k and n, the world 

<2k, …, 2k> exemplifies just the situation informally sketched: for each conjunct one 

knows it without knowing that one knows it, and it is almost but not quite certain on 

one’s evidence that one knows the conjunct; one also knows the conjunction without 

knowing that one knows it, and it is almost but not quite certain on one’s evidence that 

one does not know the conjunction. 

 Of course, in some examples one’s epistemic position with respect to each 

conjunct is better: one not only knows it but knows that one knows it. If one also knows 

the relevant closure principle, and knows that one satisfies the conditions for its 

application, one may even know that one knows the conjunction. Consequently, the 

probability on one’s evidence that one knows the conjunction is 1. However, the previous 

pattern may still be repeated at a higher level of iterations of knowledge. For example, for 

each conjunct one knows that one knows it without knowing that one knows that one 

knows it, and it is almost but not quite certain on one’s evidence that one knows that one 

knows the conjunct; one also knows that one knows the conjunction without knowing 

that one knows that one knows it, and it is almost but not quite certain on one’s evidence 

that one does not know that one knows the conjunction. To adapt the previous model to 

this case, we can simply expand the set of worlds by using n-tuples of numbers from the 
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set {0, 1, …, 3k} rather than {0, 1, …, 2k}, leaving the definitions of the epistemic 

possibility relation R and the truth-conditions of the pi unchanged (so pi is true in w if and 

only if wi > 0); then <3k, …, 3k> is a world of the required type. More generally, if one 

uses as worlds n-tuples of numbers from the set {0, 1, …, hk}, leaving the other features 

of the model unchanged, then <hk, …, hk> will be a world at which one has h – 1 but not 

h iterations of knowledge of each conjunct, and it is almost but not quite certain on one’s 

evidence that one has h – 1 iterations of knowledge of the conjunct; one also has h – 1 but 

not h iterations of knowledge of the conjunction, and it is almost but not quite certain on 

one’s evidence that one does not have h – 1 iterations of knowledge of the 

conjunction.19,20 

Many other variations can be played on the same theme. The general idea is this. 

Suppose that the epistemic status E satisfies an appropriate principle of multi-premise 

closure. In some situations, one attains E with respect to each conjunct, without knowing 

that one does so (this is possible by the anti-luminosity argument). By multi-premise 

closure, one also attains status E with respect to the conjunction, without knowing that 

one does so. Then for each conjunct it may be almost certain on one’s evidence that one 

attains E with respect to it, even though it is almost certain on one’s evidence that one 

does not attain E with respect to the conjunction. If we treat ascriptions of E as defeated 

by a low probability of E, but not by a high probability short of 1 of E, on the subject’s 

evidence, then we shall tend to judge that the subject attains E with respect to each 

conjunct but not with respect to the conjunction, even though the conditions for multiple-

premise closure principle are satisfied; we are deceived by the false appearance of a 

counterexample to the multi-premise closure principle. 
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8 The considerations of this paper raise a more general question. Knowledge claims 

are often thought to be defeated by various sorts of misleading evidence. In how many 

cases is the correct account that the subject knows, even though it is almost certain on the 

subject’s evidence at the time that they do not know? That is left as an open question.
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Appendix: The reflection principle for evidential probability 

 

 

For ease of working, we use the following notation. A probability distribution over a 

frame <W, R> is a function Pr from subsets of W to nonnegative real numbers such that 

Pr(W) = 1 and whenever X∩ Y = {}, Pr(X∪ Y) = Pr(X) + Pr(Y) (Pr must be total but 

need not satisfy countable additivity). Pr is regular iff whenever Pr(X) = 0, X = {}. Given 

Pr, the evidential probability of X⊆W at w∈W is the conditional probability Pr(X | R(w)) 

= Pr(X∩ R(w))/Pr(R(w)), where R(w) = {x: wRx}. Similarly, the evidential probability of 

X conditional on Y at w is Pr(X | Y∩ R(w)) = Pr(X∩ Y∩ R(w))/Pr(Y∩ R(w)). In both 

cases, the probabilities are treated as defined only when the denominator is positive.  

The reflection principle holds for a probability distribution Pr over a frame 

<W, R> iff for every w∈W, X⊆W and real number c, the evidential probability of X at w 

conditional on the evidential probability of X being c is itself c; more precisely:  

Pr(X | {u: Pr(X | R(u)) = c}∩ R(w)) = c 

We must be careful about whether the relevant probabilities are defined. If Pr(R(w)) = 0 

then Pr(X | R(w)) is undefined, so it is unclear what the set term {u: Pr(X | R(u)) = c} 

means. To avoid this problem, Pr(R(w)) must always be positive, so that all 

(unconditional) evidential probabilities are defined. In particular, therefore, R(w) must 

always be nonempty; in other words, <W, R> must be serial in the sense that for every 

w∈W there is an x such that wRx. For a regular probability distribution on a serial frame, 

all evidential probabilities are defined. Of course, it does not follow that the outer 

probability in the reflection principle is always defined. Indeed, 
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{u: Pr(X | R(u)) = c}∩ R(w) will often be empty, for example when X = R(u) and c < 1. 

In a setting in which all evidential probabilities are defined, we treat the reflection 

principle as holding iff the above equation is satisfied whenever the outer probability is 

defined. 

Other terminology: A frame <W, R> is quasi-reflexive iff whenever wRx, xRx; 

<W, R> is quasi-symmetric iff whenever wRx and xRy, yRx. Other frame conditions are as 

usual. In terms of a justified belief operator J with the usual accessibility semantics, 

quasi-reflexivity to the axiom J(Jp → p) and quasi-symmetry to the axiom J(p → J¬J¬p), 

and seriality to the axiom Jp → ¬J¬p. 

 

Proposition 1. The reflection principle holds for a regular prior probability distribution 

over a serial frame only if the frame is quasi-reflexive, quasi-symmetric and transitive.  

Proof: Suppose that the reflection principle holds for a regular probability distribution Pr 

over a serial frame <W, R>, and wRx. Since <W, R> is serial and Pr regular, all evidential 

probabilities are defined. 

(1) For quasi-reflexiveness, we show that xRx. Let Pr({x} | R(x)) = c. Thus  

x∈{u: Pr({x} | R(u)) = c}∩ R(w) since wRx, so Pr({x} | {u: Pr({x} | R(u)) = c}∩ R(w)) 

is defined by regularity. Hence by reflection: 

Pr({x} | {u: Pr({x} | R(u)) = c}∩ R(w)) = c 

Therefore, since x∈{u: Pr({x} | R(u)) = 0}∩ R(w), c > 0 by regularity. Hence  

Pr({x} | R(x)) > 0, so {x}∩ R(x) ≠ {}, so xRx. 
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(2) For transitivity, we suppose that xRy and show that wRy. By regularity, 

Pr({y} | R(x)) = b > 0. Hence x∈{u: Pr({y} | R(u)) = b}∩ R(w), so by regularity 

Pr({y} | {u: Pr({y} | R(u)) = b}∩ R(w)) is defined, so by reflection 

Pr({y} | {u: Pr({y} | R(u)) = b}∩ R(w)) = b > 0 

Therefore {y}∩ R(w) ≠ {}, so wRy. 

(3) For quasi-symmetry, we suppose that xRy and show that yRx. By quasi-reflexiveness, 

y∈R(x)∩ R(y), so by regularity Pr(R(y) | R(x)) = a > 0. But by quasi-reflexiveness again 

x∈{u: Pr(R(y) | R(u)) = a}∩ R(x)), so Pr(R(y) | {u: Pr(R(y) | R(u)) = a}∩ R(x)) is defined 

by regularity, so by reflection 

 Pr(R(y) | {u: Pr(R(y) | R(u)) = a}∩ R(x)) = a 

Suppose that a < 1. Whenever u∈R(y), R(u)⊆R(y) by transitivity, so Pr(R(y) | R(u)) = 1; 

thus R(y)∩ {u: Pr(R(y) | R(u)) = a} = {}, so Pr(R(y) | {u: Pr(R(y) | R(u)) = a}∩ R(x)) = 0, 

so a = 0, which is a contradiction. Hence a = 1. Thus Pr(R(y) | R(x)) = 1, so R(x)⊆R(y) 

by regularity. But x∈R(x), so x∈R(y), so yRx. 

 

Corollary 2. The reflection principle holds for a regular prior probability distribution over 

a reflexive frame only if the frame is partitional.  

Proof: By Proposition 1; any reflexive quasi-symmetric relation is serial and symmetric. 

 

Proposition 3. The reflection principle holds for any probability distribution over any 

finite quasi-reflexive quasi-symmetric transitive frame for which all evidential 

probabilities are defined. 
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Proof: Let Pr be a probability distribution over a finite quasi-reflexive quasi-symmetric 

transitive frame <W, R>. Pick w∈W, X⊆W and a real number c. Suppose that 

Pr({u: Pr(X | R(u)) = c}∩ R(w)) > 0, so {u: Pr(X | R(u)) = c}∩ R(w) ≠ {}. Since R is 

quasi-reflexive, quasi-symmetric and transitive it partitions R(w). Suppose that x∈R(w). 

By transitivity, R(x)⊆R(w). Moreover, if y∈R(x) then by quasi-symmetry and transitivity 

R(y) = R(x), so Pr(X | R(y)) = Pr(X | R(x)), so if Pr(X | R(x)) = c then Pr(X | R(y)) = c. 

Hence if x∈{u: Pr(X | R(u)) = c}∩ R(w) then R(x)⊆ {u: Pr(X | R(u)) = c}∩ R(w). Thus 

for some finite nonempty Y⊆ {u: Pr(X | R(u)) = c}∩ R(w):  

{u: Pr(X | R(u)) = c}∩ R(w) = ∪ y∈Y R(y) 

where R(y)∩ R(z) = {} whenever y and z are distinct members of Y. Trivially, if y∈Y then 

Pr(X | R(y)) = c. By hypothesis, Pr(R(y)) is always positive. Consequently:  

Pr(X | {u: Pr(X | R(u)) = c}∩ R(w)) = Pr(X | ∪ y∈Y R(y)) 

= ∑z∈Y Pr(X | R(z)).Pr(R(z) | ∪ y∈Y R(y)) 

= ∑z∈Y cPr(R(z) | ∪ y∈Y R(y)) 

= c∑z∈Y Pr(R(z) | ∪ y∈Y R(y)) 

= cPr(∪ z∈Y R(z) | ∪ y∈Y R(y))  

= c 

 

Proposition 4: The reflection principle holds for any countably additive probability 

distribution over any quasi-reflexive quasi-symmetric transitive frame for which all 

evidential probabilities are defined. 

Proof: The proof is like that for Proposition 3. In particular, whatever the cardinality of 

W, {R(y)}y∈Y is a family of disjoint sets to each of which Pr gives positive probability, 
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so Y must be at most countably infinite by a familiar property of real-valued distributions. 

Thus the summation in the proof is over a countable set.  

 

Corollary 5. For a regular probability distribution over a finite serial frame, the reflection 

principle holds iff the frame is quasi-reflexive, quasi-symmetric and transitive. 

Proof: From Propositions 1 and 3, since all evidential probabilities are defined for a 

regular probability distribution over a serial frame. 

 

Corollary 6. For a regular probability distribution over a finite reflexive frame, the 

reflection principle holds iff the frame is partitional. 

Proof: From Propositions 2 and 3. 

 

Corollary 7. For a regular countably additive probability distribution over a serial frame, 

the reflection principle holds iff the frame is quasi-reflexive, quasi-symmetric and 

transitive. 

Proof: From Propositions 1 and 4. 

 

Corollary 8. For a regular countably additive probability distribution over a reflexive 

frame, the reflection principle holds iff the frame is partitional. 

Proof: From Propositions 2 and 4. 
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Notes 

 

 

* This paper developed out of Williamson 2011. The appendix was prompted by 

discussion with Horacio Arlo-Costa, and section 5 by discussion with Kevin Kelly and 

Hanti Lin. I have also added some brief comments in response to Conee and Feldman 

2011. The idea for the original paper arose in response to discussion with John 

Hawthorne. Earlier versions of the material were presented at the following venues: 

classes and a discussion groups at Oxford, an Arché workshop on Basic Knowledge at St 

Andrews (Philip Ebert was the commentator), a workshop on epistemology at the 

University of Wisconsin at Madison (Jim Pryor was the commentator), graduate 

conferences at University College London and the University of Miami, a CSMN/Arché 

graduate conference at the University of Oslo, a workshop on mathematical methods in 

philosophy in Banff (Alberta), a symposium for Jaakko Hintikka in Copenhagen, a 

workshop on epistemic aspects of many-valued logic at the Institute of Philosophy of the 

Academy of Sciences of the Czech Republic in Prague, a conference of the Italian 

Society for Analytic Philosophy in Padua, the Moral Sciences Club in Cambridge, the 

Argentine Society for Analytic Philosophy in Buenos Aires, the Serbian Philosophical 

Society in Belgrade, colloquia in the philosophy departments of Lund University, 

Nottingham University, the University of Texas at Austin, Brandeis University, Indiana 

University at Bloomington, McGill University, and Carnegie Mellon University. I thank 

all those who have contributed to the paper with their comments and questions. 
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1 For an argument that epistemically possible propositions can have probability 0, 

even when infinitesimal probabilities are allowed, see Williamson 2007b. 

 

2 The talk of discrimination is just shorthand for talk of how much the subject can 

know about what time it is (for more discussion see Williamson 1990). In their argument, 

Conee and Feldman 2011 assume that indiscriminable positions of the hand appear 

visually to the subject in the same way, but this assumption is unwarranted; they might 

appear in different ways between which the subject cannot discriminate. 

 

3 Concerning an almost exactly similar example, although it was set up in terms of 

position rather than time, Conee and Feldman 2011 claim both that ‘Even the known 

proposition is not stated’ and that ‘The proposition that the pointer points somewhere in 

the relevant arc is the proposition that S [the subject] knows’. Their confusion may result 

from the presentation of the known proposition as R(w), rather than by a sentence you, 

the subject, use to express it. They then suppose that the relevant sentence is ‘It is 

pointing somewhere in there’, where S means ‘there’ to identify ‘S’s exact discriminatory 

limits as S knows them to be’. As explained in the text, this is not the pertinent way to 

take the example. 

 

4 Unlike the alternative examples of improbable knowing proposed by Conee and 

Feldman 2011, the example does not depend on a belief condition on knowledge, but 

rather on its more specifically epistemic character. This is important for its role in 
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explaining why we may be reluctant to ascribe knowledge of p to someone who on their 

own evidence is unlikely to know p.  

 

5 One should not get the impression that the case against the KK principle itself 

depends on the use of standard formal models of epistemic models. The anti-KK 

argument at Williamson 2000: 114-18 makes no such appeal. Their use here is to enable 

the calculation of evidential probabilities. 

 

6 On an epistemic account of vagueness, such variable margins for error yield 

distinctive forms of higher-order vagueness. Williamson (1999: 136-8) argues that if the 

‘clearly’ operator for vagueness obeys the analogue of the B (for ‘Brouwersche’) axiom 

p → K¬K¬p (which corresponds to the condition of symmetry on R) then any formula 

with second-order vagueness has nth-order vagueness for every n > 2, but does not 

endorse the B axiom for ‘clearly’. In response, Mahtani (2008) uses variable margins for 

error to argue against the B axiom for ‘clearly’ and suggests that they allow vagueness to 

cut out at any order. Dorr (2008) provides a formal model in which he proves Mahtani’s 

suggestion to hold. These arguments all have analogues for the overtly epistemic case. 

 

7 Stalnaker 2006 has the axiom schema Bp → BKp (which entails Bp → BKnp for 

arbitrary iterations Kn of K). 

 

8 For a recent discussion of the relation between knowledge and reasons for action 

see Hawthorne and Stanley 2008; see also Hyman 1999 and Gibbons 2001. 
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9 For a critique of internalist misinterpretations of excuses as justification see 

Williamson 2007a. 

 

10 Such a principle is called ‘intuitive closure’ at Williamson 2000: 117-18. 

 

11 For discussion of MPC in relation to the Preface Paradox see Hawthorne 2004: 

46-50, 154, 182-3. Similar cases involving future chances are used in Hawthorne and 

Lasonen-Aarnio 2009 against the safety conception of knowledge in Williamson 2000; 

for a reply see Williamson 2009. 

 

12 A similar problem arises for single-premise closure principles when one 

competently carries out a long chain of single-premise deductive steps, each with a small 

epistemic probability of inferential error (in the multi-premise case, for simplicity, one’s 

deductive competence is treated as beyond doubt); see Lasonen-Aarnio 2008 for 

discussion. Here is a parallel account of that case. One knows the premise without 

knowing that one knows it. For each deductive step, one carries it out competently 

without knowing that one does so. By single-premise closure, one knows the conclusion, 

without knowing that one knows it. For each deductive step, it is very probable on one’s 

evidence that one carries it out competently. However, it is very improbable one one’s 

evidence that one carries out every deductive step competently. Since it is granted that 

one knows the conclusion only if one carries out every deductive step competently, it is 

very improbable on one’s evidence that one knows the conclusion. 
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13 The usual form of epistemic modelling is not appropriate for treating possible 

errors in deductive reasoning, since logical omniscience suppresses the dependence of 

inferential knowledge on correct inferential processes. 

 

14 The technical details are taken from Williamson 2009. 

 

15 Proof: Suppose that wi > k. If wRx then |wi–xi| ≤ k, so xi > 0, so x∈  pi. Thus 

w∈Kpi. Conversely, suppose that wi ≤ k. Then wRw[i|0], for |wi–w[i|0]i| = |wi–0| = wi ≤ k 

and if i ≠ j then |wj–w[i|0]j| = 0; but w[i|0]∉pi because w[i|0]i = 0, so w∉Kpi. 

 

16 Proof: Suppose that q is i-based and xi = yi. Suppose also that x∉Kq. Then for 

some z, xRz and z∉q. But then yRy[i|zi], for |yi–y[i|zi]i| = |yi–zi| = |xi–zi| (because xi = yi)  

≤ k (because xRz), and if i ≠ j then |yj–y[i|zi]j| = 0. Moreover, y[i|zi]∉q because z∉q, q is i-

based and y[i|zi]i = zi. Hence y∉Kq. Thus if y∈Kq then x∈Kq. By parity of reasoning the 

converse holds too. 

 

17 Proof: Set #(i, q, w) = {j: 0 ≤ j ≤ 2k, w[i|j]∈q and |wi–j| ≤ k} for any w∈W, q⊆ W, 

1 ≤ i ≤ n.  For each i, let qi be i-based. Let ∩qi = q1 ∩…∩ qn. For w∈W,  

R(w) ∩ ∩qi = {x: ∀ i, xi∈#(i, qi, w)}, since for each i and x∈W, x∈qi iff w[i|xi]∈qi since 

qi is i-based. Since Probprior is uniform, Probw(∩qi) = |{R(w) ∩ ∩qi|/|R(w)| for w∈W. But 

|R(w) ∩ ∩qi| = |{x: ∀ i, xi∈#(i, qi, w)}| = |#(1, q1, w)|… |#(n, qn, w)|. By the special case 
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of this equation in which each qi is replaced by W (which is trivially i-based for any i), 

|R(w)| = |#(1, W, w)|… |#(n, W, w)|. Consequently: 

Probw(∩qi) = (|#(1, q1, w)|… |#(n, qn, w)|)/( |#(1, W, w)|… |#(n, W, w)|). 

For any given i, consider another special case in which qj is replaced by W whenever  

i ≠ j. Since n–1 of the ratios cancel out, Prw(qi) = |#(i, qi, w)|/|#(i, W, w)|. Therefore  

Probw(∩qi) = Probw(q1)… Probw(qn), as required. 

 

18 Proof: We have already established that x∈Kpi iff xi > k. Thus, in the notation of 

the previous footnote, #(i, Kpi, <2k, …, 2k>) = {j: k < j ≤ 2k}, so   

|#(i, Kpi, <2k, …, 2k>)| = k, while  #(i, W, <2k, …, 2k>) = {j: k ≤ j ≤ 2k}, so   

|#(i, W, <2k, …, 2k>)| = k+1. By the formula for Probw(qi) in the previous footnote (with 

Kpi in place of qi), Prob<2k,…,2k>(Kpi) = k/(k+1). 

 

19 A similar generalization to higher iterations of knowledge is possible for the case 

of multiple risks of inferential error in a single-premise deduction. One has at least n 

iterations of knowledge of the premise. For each deductive step, one has n−1 but not n 

iterations of knowledge that one carried it out competently. By single-premise closure 

and plausible background assumptions, one has n but not n+1 iterations of knowledge of 

the conclusion. For each deductive step, it is very probable on one’s evidence that one 

has at least n−1 iterations of knowledge that one carried it out competently. However, it 

is very improbable one one’s evidence that one has at least n−1 iterations of knowledge 

that one carried out every deductive step competently. Since it is granted that one has at 

least n iterations of knowledge of the conclusion only if one has at least n−1 iterations of 
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knowledge that one carried out every deductive step competently, it is very improbable 

on one’s evidence that one has at least n iterations of knowledge of the conclusion. 

 

20  See Williamson 2008 for more discussion of the structure and semantics of 

higher-order evidential probabilities. The phenomenon discussed in the text involves the 

apparent loss of only one iteration of knowledge between premises and conclusion. 

However, the apparent absence of a given number of iterations of knowledge can cause 

doubts about all lower numbers of iterations, by a domino effect, since lack of knowledge 

that one has n+1 iterations implies lack of warrant to assert that one has n iterations 

(Williamson 2005: 233-4).
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