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Nineteenth Century Scientific Philosophy from Helmholtz to Einstein 

[ 1 ] 
Michael Friedman

The nineteenth century, in the wake of Naturphilosophie, fairly exploded with a succession of deep and lasting transformations in both the sciences and philosophy.  As I have suggested, the most important step beyond Naturphilosophie was taken by Hermann von Helmholtz, one of the most remarkable minds of his era, who made fundamental contributions to energetics, electricity and magnetism, physiological psychology, the foundations of geometry, and scientific epistemology.  Helmholtz also came to be identified as one of the leaders of the emerging “back to Kant!” movement for a scientific philosophy, and his celebrated address, “On Human Vision,” [ 2 ] delivered at the dedication of a monument to Kant at Königsberg in 1855, became one of the primary intellectual models of this movement.  Helmholtz began by asking himself, on behalf of his audience, why a natural scientist like himself (at the time a professor of physiology at Königsberg) is speaking in honor of a philosopher.  This question only arises, he says, because of the current climate of enmity and mutual distrust between the two fields—a climate which is due, in Helmholtz’s opinion, to the speculative system of Naturphilosophie that Schelling and Hegel had erected independently of, and even in open hostility towards, the positive results of the natural sciences.  What Helmholtz is now recommending, by contrast, is a return to the close cooperation between the two fields exemplified in the work of Kant, who himself made significant contributions to science (in his nebular hypothesis of 1755) and, in general, “stood in relation to the natural sciences together with the natural scientists on precisely the same fundamental principles” (1903, 88).
As we have seen, the charge that Helmholtz levels against Naturphilosophie is fundamentally unfair.  Yet Helmholtz, nonetheless, had important new weapons up his sleeve, beginning with his formulation of the principle of the conservation of energy in 1847. [ 3 ]  In the introduction to this work he describes “the ultimate and proper goal of the physical natural sciences as such” as beginning with an “experimental part,” where one seeks to describe “the individual natural processes” by “general rules . . . which are obviously nothing but universal generic concepts though which all of the appearances belonging thereto are comprehended,” and proceeding to a “theoretical part . . . which seeks, by contrast, to find the unknown causes of the processes from their visible effects; it seeks to conceptualize them in accordance with the law of causality” ([ 4 ] 1882, 12-13).  This procedure aims eventually to discover the “ultimate unalterable causes” lying at the basis of all the appearances [ 5 ] (quote 1 on handout):

We are compelled and justified in this task by the principle that every alteration in nature must have a sufficient cause.  The proximate causes that underlie the appearances of nature can themselves be either unalterable or alterable; in the latter case the same principle compels us to seek for other causes of this alteration in turn, and so on, until we finally arrive at the ultimate causes that act in accordance with an unalterable law, and which, therefore, bring about at every time, under the same external relations, the same effect.  The final end of the theoretical natural sciences is thus to discover the ultimate unalterable causes of natural processes.  (1882, 13)
And the possibility of reducing all of the appearances of nature to this basis, in accordance with the law of causality, is then “the condition for the complete conceptualizability of nature” (1882, 16).

Thus, when Helmholtz, in his 1855 lecture on human vision, says that Kant stood “together with the natural scientists on precisely the same fundamental principles,” what he has primarily in mind is Kant’s formulation of the principle of causality.  And the salience of Kant’s formulation becomes even clearer when we note that the ultimate unalterable causes mentioned in the above quotation from his 1947 monograph turn out to comprise a system of masses interacting with one another solely through time-independent (constant or “unalterable”) central forces of attraction and repulsion depending only on the distances between them.  The main burden of the monograph that follows [ 6 ] is then to contribute to this program by showing that the phenomenological principle of the conservation of energy—the principle, as Helmholtz phrases it, that a perpetual motion machine (of the first kind) is impossible—is equivalent to the theoretical principle that all actions in nature are in fact representable by ultimate forces of attraction and repulsion in this way.  The principle of the conservation of energy is thereby shown to involve a more specific realization of Kant’s general principle of causality (the Second Analogy) corresponding, in this respect, to Kant’s own more specific [ 7 ] realization of his “transcendental” principles of the understanding in the Metaphysical Foundations Natural Science.

For Helmholtz, accordingly, all the manifold phenomena of nature—mechanical, thermal, chemical, electromagnetic, and biological—among which we see energy transferred, and in which we see the total quantity of energy conserved, are ultimately representable by an underlying system of invisible unalterable masses governed by fundamental forces of attraction and repulsion closely modelled on Kant’s dynamical theory of matter.  Helmholtz is thereby in a position to use Kant’s theory to make a number of telling objections against Schelling’s [ 8 ] dialectical extension of it.  First, and most importantly, it follows that Kant’s original theory is entirely capable, in principle, of comprehending all of the new discoveries appealed to by Schelling [ 9 ].  Second, and as a corollary, there is no need to incorporate life or any “vital principle” into the fundamental forces of matter.  On the contrary, by adopting attractive and repulsive forces (“mechanical” moving forces) as fundamental, we thereby attain a unity of all the forces and powers of nature that is completely different in kind from the organic or teleological unity envisioned by Naturphilosophie.  Third, and finally, it follows that no essentially non-Newtonian physical principles are required after all, for Newtonian central forces of attraction and repulsion, obeying only the principles of Newtonian mechanics, suffice, in the end, to explain all the phenomena governed by the new principle of the conservation of energy.

In this context, then, Helmholtz takes the main point of Kant’s principle of causality to be that of licensing an inference from the observable phenomena or appearances to the “unknown causes” of these “visible effects”—an inference from the observable phenomena to their unobservable cause.  However, by the time that he adds supplementary notes to his monograph in 1881 [ 10 ], Helmholtz has clearly abandoned this view.  In the first note, in particular, Helmholtz corrects the above-cited sentence, where the law of causality is said to lead us to “ultimate unalterable causes” from their “visible effects,” as follows [ 11 ] (quote 2) (1882, 68):  “The philosophical discussion in the introduction is more strongly influenced by Kant’s epistemological views than I would now like to recognize as correct.  I only made it clear to myself later that the principle of causality is actually nothing other than the presupposition of the lawlikeness of all the appearances of nature.”  The principle of causality can no longer serve as a justification for postulating unknown, invisible objects behind the observable appearances.  Rather, lawlikeness is now a fundamental principle governing the appearances themselves.

This shift in Helmholtz’s thinking away from his earlier commitment to the framework of Kant’s Metaphysical Foundations was mediated by his evolving understanding of electromagnetism.  It was clear from the beginning that electrical, magnetic, and electrochemical forces all satisfy the conservation of energy.  In particular, the relationship between [ 12 ] galvanic cells (batteries) and electrolytic cells (used to separate oxygen from hydrogen from water, for example) was fundamentally clarified by energetic considerations:  the former involve the conversion of chemical energy into electrical energy, while the latter involve precisely the reverse.  And this further suggested, against Naturphilosophie, that the relations among magnetic, electrical, and galvanic phenomena did not have the unidirectional, teleological character prized by the Naturphilosophen.  Moreover, the discovery by Michael Faraday [ 13 ] of magnetic induction (1831) showed that an analogous symmetrical relationship holds between electricity and magnetism.  Not only does an electric current induce a magnetic field (as had been discovered by Oersted in 1820), a moving magetic field also induces an electric current.  But these phenomena, considered together, were very difficult to accommodate with the Newtonian action at a distance forces embraced by Kant, and instead soon led to the space and time dependent electromagnetic [ 14 ] fields of James Clerk Maxwell, propagating through space with the constant velocity of light.  Helmholtz himself had meanwhile become the main defender of Maxwell’s theory on the Continent, and so he could no longer intrinsically connect his conception of the conservation of force with the Newtonian action at a distance forces of the Metaphysical Foundations.  Nevertheless, Maxwell’s theory was still essentially Newtonian in its mathematical methodology, which, as I have suggested, is already necessarily in conflict with Naturphilosophie.      
This shift in Helmholtz’s thinking away from “ultimate unalterable causes” was also mediated by the further articulation of what he called an “empiricist” theory of space-perception in his [ 15 ] monumental Handbook of Physiological Optics, completed in 1867.  The basic idea is that our ability to see objects around us in space, as localized at particular places, is not an innate capacity of either our consciousness or our nervous apparatus.  Rather, this ability is gradually learned or acquired—as we acquire our native language, for example—by a process of “unconscious inductive inference” based on regularities or associations among our sensations.  For example, my ability to localize a perceived table in three-dimensional space is in no way directly given by simple visual or tactual sensations; it rather requires (unconscious) knowledge of a large number of regularities among such simple sensations, generated as I move around the table, reach out and touch it, and so on.  In this sense, the ability to see objects in space is primarily an affair of the understanding, and [ 16 ] (quote 3) (1910, 413): “[t]he fundamental principle of the empiricist view is [that] sensations are signs for our consciousness, where learning to understand their meaning is left to our understanding.”

By the same token, therefore, the process of learning to localize objects in space is closely analogous to the conscious procedure of inductive inference characteristic of natural science.  Indeed, except for the fact that the former inferences are unconscious, the analogy is exact [ 17 ] (quote 4) (1910, 28):  “Now the same great significance that experiment has for the security of our scientific convictions, it has also for the unconscious inferences of our sensory perceptions.  Only in so far as we bring our sense organs, in accordance with our own willing, into various relations to the objects, do we learn securely to judge about the causes of our sensations, and such experimenting takes place from the earliest childhood on, without interruption, throughout the whole of life.”  We thus learn or acquire the complicated system of regularities among initially isolated and fragmentary sensations—which, as a system, first constitutes the perception of an object in space—by the very same procedure, and in accordance with the very same causal or inductive principle, that we self-consciously employ in scientific inference.  Hence, since the primary role for the causal or inductive principle here is precisely to secure our grasp of regularity or lawlikeness on the side of our perceptions, it no longer functions as a bridge to another, “hidden” realm existing behind our perceptions.

This work on the psycho-physiology of space perception was closely connected with Helmholtz’s mathematical contributions to the foundations of geometry, developed mainly in the years 1866-70.   These contributions resulted in what we now know as the Helmholtz-Lie theorem, and they paved the way, in turn, for the mature statement of his epistemological position in [ 18 ] “The Facts in Perception,” first presented as a public lecture in 1878.  For the upshot of this theorem, for Helmholtz, is that the same regularities in our sensations, on the basis of which we acquire the ability to localize objects in space, also give rise to the representation of space itself.  The voluntary actions of our bodies that allow us to localize objects by moving towards, away, and around them, also make possible a precise mathematical construction of the very three-dimensional space within which this process of localization takes place.  In this way, space does not serve as the locus of mind-independent objects existing behind the veil of perception, but rather as a [ 19 ] (1921, 117) “subjective form of intuition” in the sense of Kant—so that “space will also appear to us sensibly, clothed with the qualities of our sensations of motion, as that through which we move, through which we can gaze forth”;  it is thus the “necessary form of our external intuition . . . because we comprehend precisely that which we observe as spatially determined as the external world.”  The world of objects in space is truly “external” only in the sense of being spatial, and space itself is a construction, erected entirely on the basis of our inductively acquired ability perceptually to localize objects.

Helmholtz’s mathematical work was directly inspired by [ 20 ] Bernhard Riemann’s creation of what we now call the general theory of manifolds in his Habilitationsvortrag of 1854, “On the Hypotheses which Lie at the Basis of Geometry.”  Helmholtz’s goal, in particular, was to derive Riemann’s most important assumption or “hypothesis”—that the line-element or metric is infinitesimally Euclidean (Pythagorean)—from what Helmholtz took to be the fundamental “facts” generating our perceptual intuition of space.  Since our representation of space, as explained, arises kinematically, from our experience of moving up to, away from, and around the objects thereby localized, the space in question must satisfy a condition of “free mobility” permitting arbitrary continuous motions of rigid bodies; and from this condition, in turn, we can then derive the Pythagorean form of the line-element.  Finally, since the Riemannian metric thereby constructed has what we now call a group of rigid motions or isometries mapping any point onto any other, the only possible geometries that we can construct in this way are the three classical geometries of constant curvature [ 21 ]:  elliptic (constant positive curvature), hyperbolic (constant negative curvature), and Euclidean (constant zero curvature).  [ 22 ]
But it now follows, for Helmholtz, that specifically Euclidean geometry is not built into what he takes to be the essential or necessary character of space, given by the condition of free mobility.  In particular, it follows from Helmholtz’s theory of the origin of our spatial intuition that the particular propositions of Euclidean geometry are by no means necessities of intuition in Kant’s sense.  For we can now imagine, for example, the series of sensations we would have if we were to find ourselves moving around in a space of constant negative curvature, and such a series of sensations, on Helmholtz’s theory, would constitute an intuition of space.  Since the axioms of Euclidean geometry are not built into the most general necessary conditions underlying our spatial intuition, Kant’s theory of the origin of these axioms in our “necessary” and “transcendental” intuition of space is incorrect, and they emerge rather as merely empirical facts about the actual behavior of our measuring instruments.

Nevertheless, Kant’s [ 23 ] insight that space is a “subjective form of intuition” rather than an ordering of things in themselves existing behind the veil of appearances continues to be correct, for, as Helmholtz conceives it, “the most essential features of spatial intuition”—including free mobility and therefore constant curvature—are derived from the same original lawlike experience of bodily motion on which our ability to localize objects in space depends.  And it follows, just as it did for Kant, that we can now give a solution to the “fundamental problem” of epistemology which does not involve a relation of “correspondence” between our perceptions and mind-independent objects existing behind them.  For that to which our representations finally correspond are lawlike patterns taking place within (and, indeed, constituting) the space of our form of intuition [ 24 ] (quote 5):

I return to the discussion of the first original facts of our perception.  We have, as we have seen, not only changing sense impressions that come upon us without our doing anything for this purpose, but we perceive during our own continuing activity, and we thereby achieve an acquaintance with the enduring existence [Bestehens] of a lawlike relation between our [motor] innervations and the becoming present of various impressions from the current range of presentables.  Each of our optional motions, whereby we modify the manner of appearance of the object, is to be considered as an experiment, through which we test whether the lawlike behavior of the appearance lying before us—that is, its displayed enduring existence in a determinate spatial ordering [my emphasis]—has been correctly apprehended. (1921, 128) 

In other words, the correspondence of our sensations to enduring external objects in space is now simply equated with their characteristic lawlikeness [ 25 ] (quote 6) (1921, 130):  “What we can find unambiguously and as fact, however, without hypothetical interpolation, is the lawlike in the appearance.  From the first step on, when we perceive the objects lingering before us distributed in space, this perception is the recognition of a lawlike connection between our motions and the sensations thereby occurring.”

Helmholtz’s mature scientific epistemology [ 26 ] therefore represents a deep transformation, within a radically new scientific situation, of central doctrines of Kant’s critical philosophy.  For, in the first place, Helmholtz explicitly borrows the overriding importance of the principle of causality from Kant, and, moreover, he continues to view it as an expression of the fundamental character of our conceptual faculty (as the condition for the “conceptualizability of nature”).  In the second place, however, Helmholtz’s appropriation of the conception of space as a “necessary” and “subjective” form of our perception of external objects is perhaps even more striking.  Indeed, geometry becomes applicable to both space and external objects, just as it did for Kant, by subjecting our outer perceptions to the a priori demands of our conceptual faculty—for Helmholtz, as we have seen, by successfully subjecting such outer perceptions to the requirement of thoroughgoing lawlikeness.  
To be sure, Helmholtz, unlike Kant, is conversant with non-Euclidean geometries, and so Helmholtz, as we have seen, famously argues against the Kantian view that specifically Euclidean geometry expresses the “necessary form of our external intuition.”  On the contrary, “the most essential features of spatial intuition” include only the much more general geometrical property required by Helmholtz’s condition of free mobility:  the property of constant curvature common to all three classical cases of ellipitc, hyperbolic, and Euclidean geometry.  Nevertheless, as we have also seen, Helmholtz’s mature epistemology continues to emphasize what is arguably the most fundamental feature of Kant’s conception of space as the form of our perception of external objects:  namely, that such objects are only properly “external” in so far as they are thereby located in space, and, accordingly, they are sharply to be distinguished from any truly mind-independent objects that might exist “behind” the appearances entirely independently of our “necessary form of external intuition.”

The Austrian physicist [ 27 ], psycho-physiologist, and scientific philosopher Ernst Mach belonged to approximately the same intellectual context as Helmholtz.  Yet this particular context was largely forgotten in the twentieth century when Mach became best known, retrospectively, as one of the most important ancestors of logical empiricism [ * ]:  the Vienna Circle, for example, explicitly took on the name of Verein Ernst Mach in the late 1920s.  Mach’s philosophical motivations were thereby standardly assimilated to the traditional philosophical empiricism of Locke, Berkeley, and Hume (and, more recently, of Bertrand Russell).  Nevertheless, Mach’s own primary motivations were not epistemological in this sense, but were rather directed towards securing a new kind of unification of the empirical sciences—particularly the physical and life sciences—as he finds them in his late nineteenth century context.  

Thus [ 28 ], in the first sentence of the Preface to the first (1886) edition of The Analysis of Sensations, Mach explains [ 29 ] (quote 7) (1886, v): “I have been repeatedly led to this domain by the deep conviction that the whole of science in general, and physics in particular,  awaits the next great clarification of its foundations from biology, and, in fact, from the analysis of sensations.”  Moreover, that the unified science in question is especially concerned with contemporary work in psychology and physiology is made explicit in a parallel passage in the third chapter (added to the greatly enlarged second edition of (1890, 35) (quote 8) [ 30 ]):  “I sought only a secure clear philosophical standpoint, on which no metaphysical clouds were encamped, from which practicable paths were visible into both the domain of psycho-physiology and that of physics.”     

In particular, Mach’s distinctive scientific epistemology, just like that of Helmholtz, was inextricably entangled with his own empirical research in psycho-physiology.  For Mach, in fact, the new science of psycho-physiology constituted the basis for a new kind of unification of the sciences in general.  Just as the principle of the conservation of energy, as we have seen, had revealed fundamental lawlike correlations between mechanics, chemistry, biology, and electricity and magnetism, psycho-physiology enabled us to push this process further into the hitherto mysterious relationship between the physical and the psychical.  And it was this conviction, above all, that led Mach to a new form of scientific epistemology capable of comprehending both the novel developments within the psychological and biological sciences and parallel developments within contemporary physics.  For Mach, moreover, Darwinian evolutionary biology took on a new and fundamental importance—which is best appreciated by briefly considering the famous dispute between Helmholtz, on the one side, and Mach and Ewald Hering, on the other, concerning “empiricism” versus “nativism” [ 31 ] in the psycho-physiology of sense perception.  

As we have seen, Helmholtz originally set the terms for this debate by defending what he called an “empiricist” theory of the origin of our representation of space, and he articulated this theory, as we have also seen, by means of modified and generalized versions of Kant’s conceptions of the principle of causality and of space as a “necessary” and “subjective” form of outer intuition.  For Hering and Mach, however, a commitment to “nativism” involved a corresponding commitment to Darwinian evolution, and this resulted, for Mach, in a less Kantian and more “pragmatic” form of scientific epistemology.  In Helmholtz’s view, our representation of space is fully learned or acquired by what he understood to be an individual adaptation, whereby each organism acquires the representation of space within its own lifetime from the lawlike relations among its perceptions, and there is no inheritance, in this respect, from previous generations.  For Hering and Mach, by contrast, [ * ] the representation of space is largely “hard-wired” into individual psycho-physiology at birth, so that it is thereby subject to a Darwinian evolutionary adaptation extending across many generations.  The result, for Mach, was a version of scientific epistemology in which all of the sciences (including the mathematical and physical sciences) successively emerge as stages of a fundamentally biological evolutionary process involving a gradual adaptation of the entire human species to its natural environment.  (Mach:  the “economical” goal of science.) 
Mach’s best known contribution to the later tradition of scientific philosophy—which decisively influenced both the logical empiricists and Albert Einstein—was [ 32 ] The Science of Mechanics (1883) (18892).  This “historical-critical” account of the development of mechanics aimed to demystify its privileged role within the sciences by depicting its historical evolution from the concrete practical experiences constituting its basis.  Mach thereby hoped to reveal the empirical meanings of the increasingly abstract concepts of mechanics and, at the same time, to purge it of unnecessary metaphysical excrescences.  The most important example of Mach’s procedure, in the present context, is his famous critical discussion of Newton on space, time, and motion—which, it turns out, can be seen as an important conceptual bridge between Kant’s discussion of these issues in the Metaphysical Foundations and the late nineteenth century development of the concept of an inertial frame of reference—which concept, in turn, underlies our favored contemporary account of the empirical meaning of Newton’s theory.

As I have explained in detail elsewhere, Kant, [ 33 ] in the Metaphysical Foundations, understood Newtonian absolute space in terms of a constructive procedure for empirically determining, starting from our parochial perspective here on earth, privileged centers of motion for successively wider systems of rotating bodies.  We first [ 34 ] determine the earth’s state of true rotation (via centrifugal forces for example), then move to the center of gravity [ 35 ] of the solar system, then to the [ 36 ] center of gravity of the Milky Way galaxy, then to the center of gravity [ 37 ] of a system of such galaxies, and so on ad infinitum.  We thereby construct a sequence of ever better approximations to what is now called an inertial frame, within which every true acceleration is counterbalanced by an oppositely directed such acceleration in accordance with the equality of action and reaction.  In the limit, judged from the point of view of what Kant calls “the center of gravity of all matter” (563), we would obtain a global inertial frame embracing all the motions in the universe.  This is “absolute space” in Kant’s sense, which, for him, amounts to a regulative idea of reason that we can only progressively approximate but never actually attain.
Similarly, Mach, in the first (1883) [ 38 ] edition of The Science of Mechanics, substituted a privileged astronomical frame of reference—defined by the fixed stars—for Newtonian absolute space.  Mach was thus attempting to summarize the concrete empirical evidence on which Newton’s theory was actually based.  And, like Kant before him, Mach appealed to a cosmic application of the equality of action and reaction to obtain an empirically definable surrogate for absolute space.  Between the first (1883) and second (1889) editions [ 39 ], however, he became familiar with the late nineteenth century development of the concept of an inertial frame culminating in Ludwig Lange’s fundamental clarification in 1885.
 [reference after quote 8]  Mach came thereby to appreciate that the laws of mechanics can be formulated more abstractly, without assuming that any real physical system (like the fixed stars) is, in fact, a true inertial system.  It is in this precise sense, therefore, that Mach’s discussion of the Newtonian concepts of space, time, and motion in The Science of Mechanics can be viewed, as I have suggested, as an insightful conceptual bridge between Kant’s penetrating and original discussion of these same concepts in 1786 and the emergence of the modern concept of an inertial frame some one hundred years later.

With Mach, then, we stand on the threshold of the even more profound transformation of the Newtonian concepts of space, time, and motion effected by Einstein.  [ 40 ]  Indeed, Einstein, as is well known, often explicitly expressed his indebtedness to Mach.  Nevertheless, in order fully to appreciate the way in which Einstein’s theories of relativity grew out of the nineteenth century background, we need first to discuss the intervening contributions of the great mathematician, mathematical physicist, and scientific philosopher [ 41 ] Henri Poincaré, who, in several important respects, was much closer to the scientific and philosophical situation addressed by Einstein that either Helmholtz or Mach.  In particular, Poincaré himself made very significant contributions to the electrodynamics of moving bodies around the same time as Einstein’s publication of the special theory of relativity in 1905—to such an extent, in fact, that there is still an ongoing debate concerning who first discovered this theory.  Moreover, Poincaré’s articulation of a “conventionalist” philosophy of geometry also deeply influenced Einstein, not only in his formulation of special relativity in 1905, but also, now considered in relation to the opposing “empiricist” philosophy of geometry earlier developed by Helmholtz, in Einstein’s development of the general theory of relativity in the years 1912-15.
The best known and most influential statement of Poincaré’s scientific epistemology is [ 42 ] Science and Hypothesis (1902), whose subject is mathematics and the mathematical sciences.  For it is in precisely these sciences, in particular, that we meet the centrally important examples of statements that “are only hypotheses in appearance and reduce to “definitions or conventions in disguise” (1902, 2) [ 43 ] (quote 9):

These last [“definitions or conventions in disguise”] are met with above all in mathematics and the related sciences.  It is precisely from them that these sciences acquire their rigor; these conventions are the work of the free activity of our mind, which, in this domain, recognizes no obstacle.  Here, our mind can affirm because it decrees; but let us understand one another; these decrees are imposed upon our science; they are not imposed upon nature.  Are these decrees then arbitrary?  No, otherwise they would be sterile.  Experience leaves us our free choice, but it guides us by helping us to discern the most convenient path.  Our decrees are therefore like those of an absolute, but wise prince, who consults his council of state. (1902, 3)
Poincaré concludes his brief Introduction by a review of what he calls “the series of sciences from arithmetic and geometry to mechanics and experimental physics” (1902,  4), beginning with the sciences where free conventions are most in evidence—where we are dealing with “frames that we impose upon the world”—and concluding with the more physical and empirical sciences.

This series or hierarchy of sciences begins with arithmetic, where, according to Poincaré, we find the most characteristic form of mathematical reasoning, namely, reasoning by recurrence or mathematical induction.  This science is synthetic a priori in Kant’s sense, and is thus a necessary frame we impose on all of our experience.  At the next lower level we find another important frame we impose upon our sense experience:  namely, the framework of mathematical magnitude comprising the full continuum of real numbers.  It is at the following (third) level, however, that  we find the concept of space, a very special example of a three-dimensional mathematical continuum. Here Poincaré follows Helmholtz [ 44 ] in taking the sensory experience in question to be that involved in our experience of bodily motion—the experience, as Poincaré puts it, of bodily “displacements.”  In order to apply mathematics to this intuitive experience we then need to form a corresponding rigorous concept, and this, for Poincaré is the concept of a group—a highly idealized description of our actual experience.  In particular, we also assume, as an additional idealization, that we [ 45 ] thereby arrive at a continuous group in the sense of Sophus Lie, where the displacements under consideration are themselves ordered and arranged in a mathematical continuum (in this case a continous manifold of six dimensions).  It now follows, by the [ * ] Helmholtz-Lie theorem, that space, in this sense, has a (metrical) geometry, and so, for Poincaré, we now have the beginnings of an explanation for how we are able to apply the exact science of geometry to our inexact sensory experience.

In particular, we now know that the space thereby constructed must have one of the three classical geometries of constant curvature [ 46 ]:  elliptic, hyperbolic, or Euclidean.  But how do we then know which of these three different cases actually obtains?  Helmholtz’s answer, as we have seen, was that “the most essential features of spatial intuition” include only free mobility and thus constant curvature, and, therefore, that the specifically [ * ] Euclidean character of physical space is a merely empirical fact about the actual behavior of our measuring instruments as we move them around in accordance with the condition of free mobility.  In this sense, Helmholtz’s philosophy of geometry was Kantian in so far as space indeed has a “necessary form” expressed in the condition of free mobility, but it was empiricist in so far as which of the three possible geometries of constant curvature obtains is then determined by experience—for example, by measuring the angles of a triangle and determining whether their sum is 180º (at least to a very high degree of approximation).    

Poincaré’s revolutionary answer, however, was neither Kantian nor empiricist in this sense.  The specifically Euclidean form that we impose upon our experience [ * ] of bodily displacements is neither necessary nor empirically determined, but rather a “definition or convention in disguise” resulting from the “free activity of our mind.”  For, in the first place, the group-theoretic analysis of the condition of free mobility that Poincaré derives from Lie reveals that it, too, is based on nothing more nor less than a freely chosen mathematical idealization of our rough and approximate sensory experience.  And, in the second place, even with such an idealization already in place, there is still no way, for Poincaré, that our actual experience of such displacements can then discriminate sufficiently between the three classical geometries of constant curvature.  Rather, we stipulate or postulate Euclideaen geometry by convention, as the simplest and most convenient idealization available of our inexact sensory experience.  And,  more generally, geometry, for Poincaré, is far too entangled with lower-level considerations belonging to what he calls empirical physics—involving the physical rigidity of real (material) bodies—to enable a straigthforward empirical determinations such as the one (apparently) envioned by Helmholtz.
The final two levels of Poincaré’s hierarchy of the sciences comprise [ 47 ] mechanics (which, for Poincaré, means the Newtonian classical mechanics to which he himself had made centrally important contributions in mathematical astronomy) and the more experimental parts of physics—such as theories of particular types of empirically given forces.  At this point, Poincaré says [ * ] (quote 10), “we arrive at the physical sciences properly so-called[; h]ere the scene changes; we encounter another kind of hypotheses and we perceive all of their fecundity” (1902, 5-6).  Moreover, the main examples of these “physical sciences properly so-called” come from the development of optics, electricity, and electrodynamics.  This is by no means surprising, since Poincaré’s most important contributions to physical science (as opposed to pure mathematics and mathematical astronomy), in this context, comprise his own very significant contributions to the electrodynamics of moving bodies.

[ 48 ] Einstein begins his 1905 paper “On the Electrodynamics of Moving Bodies” with the [ 49 ] example of the relatively moving magnet and conductor, where [ 50 ] (quote 11) “[t]he observable phenomenon here [the current flowing through the conductor] depends only on the relative motion of the conductor and the magnet, whereas, according to the customary view, the two cases, in which either the one or the other of these bodies is in motion, are strictly to be separated from one another” (1905, 891).  Thus, Einstein here appeals to a fundamental symmetry in the electromagenetic phenomena, which, however, is asymmetrically represented within the standard version of Maxwell’s theory formulated within a classical space-time framework (simultaneity assumed to be absolute).

Einstein then introduces a “principle of relativity” in the immediately following second paragraph [ 51 ] (quote 11): 

Examples of this sort, together with the unsuccessful attempts to discover any motion of the earth relative to the “light medium,” suggest that the phenomena of electrodynamics as well as mechanics possess no properties corresponding to the idea of absolute rest.  They suggest rather that, as has already been shown to the first order of small quantities, the same laws of electrodynamics and optics will be valid for all frames of reference for which the equations of mechanics are valid.  We will elevate [erheben] this conjecture (whose content will be called the “principle of relativity” in what follows) to the status of a postulate [Voraussetzung], and also introduce another postulate, which is only apparently irreconcilable with it, namely, that light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the emitting body.  These two postulates suffice for attaining a simple and consistent theory of the electrodynamics of moving bodies based on Maxwell’s theory for stationary bodies. (1905, 891-2) 

Note that here, as Einstein suggests in a footnote added in 1913, he did not yet have knowledge of either the Michelson-Morley experiment nor the resulting appeals to the Lorentz-Fitzgerald contraction hypothesis to explain this experiment within a classical framework—for Einstein only mentions experimental results up to first order in v/c.  He is already willing to “conjecture,” however, that the same results will be found for all orders, and, as he says, he is willing to “elevate [erhaben]” this conjecture to the status of a fundamental principle or postulate.  

We know that Einstein [ 52 ] intensively studied Science and Hypothesis in the years 1902-4, as part of the curriculum of a discussion group in Bern.  And it appears very likely that he had paid particular attention to Poincaré’s treatment of electrodynamics.  For Einstein, like Poincaré, is demanding that we here follow a rigorous extrapolation of the (then) known experimental results according to which the “principle of relativity” is assumed to be valid for all order of v/c at once.  Moreover, a general methodological moral of Science and Hypothesis, stated in Poincaré’s “General Conclusions” to the third part, is that [ 53 ] (quote 14) the fundamental principles of mechanics are “conventions or definitions in disguise” which are “drawn from experimental laws; these laws, so to speak, have been elevated [érigées] into principles to which our mind attributes an absolute value” (1902, 165).  It appears from Einstein’s language, then, that he is here following this methodology quite precisely [ 54 ].
  

In particular, the experimental law in question comprises the contemporary results on the failure to determine the motion of the earth with respect to the aether.  These, like all such experimental results, can only be valid up to a certain order of approximation.  Nevertheless, by postulating or presupposing that they are strictly and universally valid, we can thereby “elevate” them to a wholly different status.  In this case, the presupposed principle of relativity, together with the light postulate, then issues in what Einstein calls a new “Definition of Simultaneity” in the immediately following § 1 of Part I—which arises, as Einstein himself emphasizes, in so far as we “stipulate [festsetzen] by definition” that the “time” light takes in travelling from A to B is the same as the “time” it takes in travelling back from B to A (1905, 894).  A more perfect implementation of Poincaré’s “elevationist” methodology, against the background of Poincaré’s own conception of the role, in electrodynamics, of what he, too, is now calling the principle of relativity, could hardly be imagined.

� See R. DiSalle, “Reconsidering Ernst Mach on Space, Time, and Motion,” in D. Malament (ed.), Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics (2002)


� Later, in 1921, Einstein explicitly uses the language of “elevation” [erheben] in connection with  precisely Poincaré’s “conventionalism” in connection with general relativity—to which I shall return in the next lecture.





