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Letter Games: a metamathematical taster
A. C. PASEAU

1. Godel

Metamathematics the mathematicaktudy of mathematicstself. Two
of its most famoustheoremswere proved by Kurt Godelin 1931.In a
simplified form, Godels first incompletenesstheorem states that no
reasonablamathematicakystemcan prove all the truths of mathematics.
Godels secondincompletenessheorem(also simplified) in turn statesthat
no reasonablenathematicakystemcanproveits own consistencyAnother
famousundecidabilitytheoremis that the ContinuumHypothesisis neither
provablenor refutablein standardsettheory! Many of us logicians were
first attractedto the field as studentsbecauseve had heardsomethingof
theseresults All researchmathematicianknow somethingof themtoo, and
haveat leasta rough senseof why ‘we can't prove everythingwe want to
prove’.

The aim of this article is to give students(sixth-formers/highschool
seniorsand juniors, or beginning undergraduatesd small senseof what
metamathematicss—that is, how one might use mathematicsto study
mathematicsitself. School or college teacherscould base a classroom
exerciseon the lettergamesl shall describeandusethemasa springboard
for further exploration.Since | shall presupposeno knowledgeof formal
logic, the gamesare less an introduction to Gédels theoremsthan an
introduction to an introduction to them. Neverthelessthey show, in an
accessible way, how metamathematics can be mathematically interesting.

2. The vowel game+2-variani

The following one-player‘game’ is played with the letters of the
Englishalphabet At any stage you canperformoneof the following three
actions:

(i) Action 1: immediatelybelow the last letter to be written down (if

any), write a vowel;

(i) Action 2: immediately below the last letter to be written down,
write any letter thatis the doublesuccessom the alphabetof any
previous letter;

(iii) Action 3: end the game.

(Thedoublesuccessoof ais c, thatof b is d, etc.) A simpleexampleof a
game is:

i (Action 1)

k  (Action 2)

*

The ContinuumHypothesiscan be expressedy sayingthat the size of the real
numbersis the next size of infinity after the smallestinfinite size, that of the
natural numbers; its undecidability was proved by Gédel and Paul Cohen.
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m  (Action 2)

End (Action 3)
Thelastletterof a game,if it hasone,is calledthatgame'serminalletter;in
the exampleabove,mis theterminalletter. A possibleterminal letteris the
terminal letter of a possiblegame.The questionis: what are the possible
terminal letters? Think about it before reading on.

3. Solution

The answerturns on a curious feature of the English alphabet.Let's
numberthe lettersin the alphabetsothatais 1, bis 2, ... andzis 26. The
trick is to notice that the vowels occupy odd-numbered positions:

a lst
e 5th
i:9th
0:15th
u: 21st

Sinceadding?2 to an odd numberresultsin an odd number,andthe number
of lettersin the English alphabet(26) is even,the setof possibleterminal
lettersis preciselythe setof lettersin odd-numberegbositions:a, ¢, e, g, 1, K,
m,0,q, S, U, W,Yy.

The descriptionof the gamewas somewhatvague,in that it did not
specify whetherthe alphabetwraps around’,i.e. whetherfor the purposes
of the gamethe successoof zis a. As we cannow see thatdoesn'tmatter:
the terminallettersare the odd-numbere@nesin both casesThe answeris
equally unchangedf one takesy to be a vowel, sincey occupiesan odd-
numbered position in the alphabet.

4. The vowel gamét+3-variani

Suppose Action 2 is emended as follows:

(i) Action 2: immediatelybelow the last letter to be written down,
write any letter that is the triple successom the alphabetof any
previous letter.

What are the possible terminal letters in this variant of the game?

The answeris that all of them are, assumingthat the alphabetwraps
around.To seethis, noticethat startingfrom a, onecanreachall the letters
whosepositionin the alphabeteavesremainderl whendivided by 3 (1, 4,
7, etc.).Onceonehasreachedy, the 25 thletter of the alphabetnotice that

Althoughin Englishthe lettery is traditionally takento be a consonantit canin
fact havea vocal value aswell as a consonantabne, dependingon the word it
appearsin. For example,the value of y in ‘why’ is vocal—the word is a
homophoneof ‘wi’ asin ‘wi-fi'—whereas its value in ‘yes’, ‘yak’ or ‘you’ is
consonantal.
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25 leavesremainderl whendivided by 3), onethenreached, sinceb is y's
triple successorStarting from b, reachablefrom a via d, g, ..., Yy, one
reachesall the letters whose position in the alphabetleavesremainder2
whendivided by 3 (2, 5, 8, etc.). From z which is the 26 th letter of the
alphabet(notice that 26 leavesremainder2 when divided by 3), onethen
reachesc, sincec is Zs triple successorFinally, startingfrom ¢, one can
reachall the letterswhosepositionin the alphabeleavesremaindel0 when
divided by 3 (3, 6, 9, etc.),in otherwordsall the multiplesof 3. Sinceany
numberleavesremainderQ, 1 or 2 whendivided by 3, that coversall the
letters. This provesthat all the lettersof the alphabetare possibleterminal
letters of the +3-variant of the game.

The +3-variant is mathematicallya little more interesting than the
original +2-version.It makesit clearthat what underpinsthe solutions,as
manyreaderswill haverealisedjs modulararithmetic.The lettersreachable
from a in the original +2-versionof the gameare just the letters whose
positionsareof theform 1 + 2N (mod 26) for non-negativeN. The fact that
all vowelsarein position1 + 2N (mod26) for someN explainswhy all and
only letterswhosepositionsareequalto 1 + 2N (mod 26) areattainable A
similar explanationcanbe given for the +3-variant:the numbersequalto
1 + 3N (mod 26) for non-negativeN are all the numbersfrom 0 to 25
inclusive, so that everythingis reachablefrom a (and a fortiori from a
vowel).

5. The consonant games

We turn now to the consonantgame,or better, games,as there are
infinitely many of them. In contrastto the vowel games,the aim of these
gamess to reachall the consonantsubjectto the constraintthat no vowels
are reached. Different versions of this game arise from different
specificationsof the two actions,analogousto thoseof the vowel game.
Suppose/ is asetof consonantsndN a non-negativenteger.The (¥, N)-
consonant game is the following:

(i) Action 1: immediatelybelowthe last letter to be written down (if
any), write any element 6f;

(i) Action 2: immediately below the last letter to be written down,
write any letter that is the N th successoin the alphabetof any
previous letter;

(iif) Action 3: end the game.

Terminallettersarethendefinedin the sameway asin thevowel game.The

(¢, N)-consonangame for specificvaluesof & andN, is saidto be soundif
its setof terminalletterscontainsno vowels,andunsoundf this setcontains

| usecapitallettersasvariablesor constantgor numbersandscriptcapitalletters
as variables or constantsfor sets. Letters are autonymously denoted by
themselvesAs earlier, the Nth successoof a letter is the letter that appeardN
placesafterit in the(cyclic) alphabetge.g.the 3rd successoof ais d andthatof z
isc.
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at leastone vowel. It is said to be completeif its set of terminal letters
containsall the consonantandincompleteif it omits atleastone.The idea
behindtheselabelsis that, in contrastto the vowel game,in consonant
gamesvowelsaredeemedbad’, so we don‘twantany of themto endup as

terminalletters;and consonantsre deemedgood’, so we wantasmany of

them as possible to be terminal letters.

Let's illustrate the definition with someexamples.Startwith a simple
classof gamesjn which¥ = <& (theemptyset),andN is anynon-negative
integer.Sincein thesegameswe can neverperformeither Action 1 or 2—
we canneverget started—it'sclearthat the setof terminallettersis empty.
Thus all thd@, N)-consonant games are sound but incomplete.

Next, considerthe class of gamesfor which N = 0. Sincein these
gamedAction 2 boils downto ‘write downanyletter previouslywritten’, the
terminallettersof the (¥, 0)-consonangamearesimply the elementf .
Theonly (¥, 0)-gamethatis soundandcompleteis the onefor which & is
equalto ¢, where% is the setof consonanti the EnglishlanguageForif &
omitsa consonantthenthe (¥, 0)-gameis incomplete;andif ¥ containsa
vowel, then the game is unsound.

Turn finally to thecaseN = 2. Whendiscussingthe vowel game,we
remarkedthat the vowels occupy odd-numberegositionsin the alphabet,
andthatthe alphabetonsistsof anevennumberof letters. The (¥, 2)-game
is thereforeunsoundif ¥ containsany consonantwhose position in the
alphabetis odd; for exampleif cis in ¢, thenone canreache by writing
downc (Action 1) followed by e (Action 2), which is a vowel. Conversely,
if ¥ containsno consonaniwhosepositionin the alphabeis odd, thenit is
soundbut incomplete,sincethe setof terminal lettersin that casecannot
containany of the odd-numbereaonsonantsthatis to say,noneof c, g, k,
m, g, S, w, y. The underlying reason,once more, is that the +2-action
preserves parity and that the English alphabet has an even number of letters.

A naturalquestionnow arises:for which ¢ andN is the (¥, N)}-game
both sound and complete?

6. A little theorem
The answer is:

Theorem The (¥, N)-gameis soundand completeif, andonly if, ¥ = €
(the set of consonants) aNds a multiple of 26.

Thosewilling to takethis theoremon trust canskip to the next section.
For the rest, we begin the proof with a lemma:
Lemma Let integersM andN havegreatesttommondivisor D. If Ais an
integer,theneveryequationin unknown X of the form NX = DA (mod M)
has a solution.

The proof of thelemmais easyenoughif we assumehefollowing fact:
if Dis thegreatescommondivisor of M andN thenthereareintegersX and
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Y suchthatXM + YN = D. For, multiplying bothsidesof thelastequation
by A, we seethatAXM + AYN = AD andhencethatAYN = AD (modM),
i.e. AY solvesNX = DA (mod M). The fact itself is a corollary of the
Euclidean algorithm for finding the greatestcommon divisor of two
integers;its proof may be found in any elementarytextbook on number
theory.

Turningto thetheoremit's clearthatthe setJ of terminallettersof the
(¢, N)-gameconsistsof all and thoselettersequalto S + NX (mod 26)
whereSis the positionin the alphabetof someelementof ¥ and X is any
non-negativeinteger. We split the argumentinto four cases.Since the
(¢, N)-game is equivalentto the (¥, N + 26K)-game, we need only
considevaluesof N from 0 to 25 inclusive.Observealsothatif & is empty
then 7 is alsoempty, as previouslyargued.Thusif the (¥, N)-gameis to
standa chanceof being soundand complete,¥ must containat leastone
letter, a fact we henceforth assume.

() IfN = 0thenT = . Soif the(¥, 0)-gameis to be soundand
complete¥ must be equal t@, the set of consonants.

(i) If Nisoddandnotdivisible by 13,thenJ is the setof all lettersof
the alphabetsincethe valuesof NX (mod 26) areall the integers
from O to 25 inclusive (apply the Lemmawith N = N, M = 26
andD = 1). It follows thatif N is oddandnotdivisible by 13then
the(¥, N)-game is unsound.

(i) If N is oddanddivisible by 13,thenN = 13. If J is equalto 6
thenit mustcontainthe letter b andhenceits antipodeo (a letter's
antipodebeing 13 placesafterandbeforeit in the cyclic alphabet),
so the game cannot be both sound and complete.

(iv) If N is evenand non-zero,then N is not divisible by 13 but is
divisible by 2. By an application of the Lemma (with N = N,
M = 26 andD = 2), everyequationin unknownX of the form
NX = 2A (mod 26) hasa solution,whereA is aninteger.And if
the(¥, N)-gameis to be completethenthesetJ of terminalletters
mustcontainc. But if 9 containsc, which is the third letter of the
alphabet,thenit must also contain all odd-numberedetters, by
whathasjust beenargued Henceno suchgamecanbe both sound
and complete.

That completesthe proof that the only soundand completegamesare the
onesfor which ¥ = % and N is divisible by 26. In otherwords,theseare
the gamesin which one may write down any consonantind any previously
written letter. Thesegamesare trivially soundand complete;and no other
games are sound and complete.

Our proof usedsomemodular arithmetic that may not be familiar to
somestudentsput suchstudentscanstill provethe theoremby efficiently
running through the 26 possible values\pfor different<.
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7. Analogy

What do the vowel gameand the consonantgameshave to do with
metamathematics®@e can draw a fairly exactmetamathematicanalogy
between consonant games and mathematical systems.

We maythink of the lettersof the alphabetas mathematicastatements,
e.g. statementf arithmetic, or geometry,or combinatorics.Consonants
may be thoughtof as true statementssuchas2 + 3 = 5, andvowels as
falsestatementssuchas2 + 3 = 7." Theconsonantin &, which onemay
write down at any point, are akin to axioms: true statementsone may
assumeat any point in the argument.Applying Action 1 is thus akin to
assumingan axiom—a statemenione neednot arguefor but may simply
posit—in a mathematicabrgument Applying Action 2, in contrast,s akin
to applyinga rule of inference:it allows usto derive a new statemenfrom
previouslyderivedones.A terminalletter is akin to a theorem:a statement
proved using only axioms as a starting point via acceptablerules of
inference An axiom systemis soundjust whenits theoremsetconsistsonly
of true statementsThis is akin to a soundconsonanggame,which ‘proves’
only consonantgtrue statements)and no vowels (false statements)An
axiom systemis completejust whenits theoremsetconsistsof all the true
statementsThis is akin to a completeconsonangame,which ‘proves’ all
the consonantgtrue statements)Whatwe would ideally like is a soundand
completeproof system,sincewe would like our proof systemto proveall
and only true statementsFinally, the mathematicsusedin investigating
whether a particular consonantgame is sound or completeis modular
arithmetic.Iln our analogy,it playsthe role of the metamathematicgsedto
investigatethe propertiesof mathematicaproof systemsjn particulartheir
soundness and completeness.

One of the most famousproof systemsis PeanoArithmetic. Named
after the Italian mathematicianGiuseppePeano,PeanoArithmetic is a
systemcontaining axioms for intuitively true principles about arithmetic
(suchasthe principle of induction) and logical rules of inferencegsuchas
modusponensj.e.from ‘A" and‘if AthenB' infer ‘B").T PeancArithmetic
is a soundsystemin that its axioms are true statementsand its rules of
inferencepreservetruth, soits theoremsetis a subsetof all true statements
one canmakeaboutarithmeticin the languageof the system.The question
is: is PeandArithmetic completeThatis to say,aswell asprovingonly true
statement®f arithmetic(becauset is sound),doesPeanocArithmetic also

In the consonantgames,that is. In the vowel game,the analogy would be
reversed:the vowels would play the role of true statementsWe focus on the
consonant games here.

T The name‘PeanoArithmetic’ is in fact a misnomer,due to BertrandRussell,
since Richard Dedekind first came up with theseaxioms, which Peanolater
investigated, with honest attribution to Dedekind. The usual English
pronunciatiorof ‘PeancArithmetic’, beit thedisyllabic'Pia-no’ or thetrisyllabic
‘Pi-a-n0o’ is unfaithful to the (trisyllabic) Italian pronunciation‘Pe-a-no’, with
‘Pe’ pronounced as in ‘pen’ and the stress falling on the middle syllable.
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proveall truestatementsThis is the questionGddelposedandansweredn
the negativein 19317 As he showed,PeanoArithmetic is incomplete:it
expressesometruearithmeticalstatementsvhich it itself cannotprove.The
truebutunprovablestatementgeneratedy Godel'smethodsarenow called
Godel sentencesln fact, Godel'sargumentsshowedthat such statements
arise for most reasonablemathematicakystems,including any consistent
system that includes basic arithmetic and whose theorem set can be
effectively generated.

What G6del showed then,is that actualmathematicabystemsendto
bemorelike the (¥, N)-gamegor N indivisible by 26 thanthe (€, 0)-game:
theyaresoundbutincomplete Our ‘impossibility’ theoremfor systemsawith
N = 0 (mod 26) or ¥ # € showedthat, if the systemis sound, it is
impossibleto reachall the consonantsWe thusprovedthatin suchsystems
thereis no ‘proof’ of someconsonanbr other. As we might now put it,
pursuingthe metamathematicalnalogy:our metalanguageroof (in normal
mathematicsyhowedthat thereis no object-languageroof (in the game
language)of someconsonantFor the (¢, 0)-game,in contrastwe havea
(metalanguageproof that every consonanftruth) is reachablgprovable),
i.e. that every consonant is a possible terminal letter.

We summarisethe parallels between consonantgames and proof
systems in the following table:

Consonant Gamg Mathematical System
alphabet| statements
consonantg true statements
vowels | false statements
terminal letters (elements &) | theorems
the setf | axiom set
the+N-Action | rule of inference
applying Action 1| assuming an axiom
applying Action 2| applying a rule of inference
modular arithmetic| metamathematics
soundness (no vowels are reachallspundness (no false statement is provable)
unsoundness (a vowel is reachablehsoundness (a false statement is provable)
completeness (all consonants are reachatdempleteness (all true statements are provable)
incompleteness (not all consonants are reachatitgompleteness (not all true statements are provable)

But beware:the parallel is not perfect. The argumentswe gave for the
incompletenessf the sound(¥, N)-gamesandunsoundnessf thecomplete
(¢, N)-games,for N = 0 (mod 26) or ¥ = %, were basedon modular
arithmetic. Godel'sgeniuslay in the fact that he usedarithmeticitself to
codea sentencés which ‘says’ that G itself is not provablein the systemlin
fact, Godel's argumentalso used some facts about modular arithmetic,
includingthe ChineseRemaindeiTheoremputit alsocrucially usedthe fact

*

Godelhimself was concernedvith Russelland Whitehead'systemin Principia
Mathematicabut his argument generalises.
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thatone canusenumbersto codestatementsf arithmeticor indeedof any
other part of mathematics.lt is quite clear, in contrast, that modular
arithmeticis an entirely different theory from the consonantgame itself;
thereis no obvious way in which we could use the consonantgameto
investigatdtself. But althoughthe consonanggamedoesnot hint atthe idea
of self-referencecentralto Gddel'sargument,it doeshavea greatmany
other points of analogy, as just observed.

8. Conclusion

The mathematicsisedto solvethe vowel gameis simple,andrequires
only animplicit understandingf modulararithmetic.Indeed,| was careful
to explainit in a way thatdoesnot explicitly appealto modulararithmetic.
In the past,| have even usedthe vowel gameas an Oxford admissions
guestion(thoughthat use hasnow beenforfeited). Solving the consonant
gamesrequires a little more, but still fairly elementary,knowledge of
modulararithmetic. Thesegamesare thereforeaccessiblemathematically
interesting,and a bonafide introductionto metamathematicsThey are a
gentle introductionto the kind of thinking involved in metamathematics,
requiring no acquaintance with formal logic.
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