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Letter Games: a metamathematical taster

A. C. PASEAU

1.   Gödel
Metamathematicsis themathematicalstudyof mathematicsitself. Two

of its most famoustheoremswere proved by Kurt Gödel in 1931. In a
simplified form, Gödel's first incompletenesstheorem states that no
reasonablemathematicalsystemcan prove all the truths of mathematics.
Gödel's secondincompletenesstheorem(also simplified) in turn statesthat
no reasonablemathematicalsystemcanproveits own consistency.Another
famousundecidabilitytheoremis that the ContinuumHypothesisis neither
provablenor refutablein standardset theory.* Many of us logicians were
first attractedto the field as studentsbecausewe had heardsomethingof
theseresults.All researchmathematiciansknow somethingof themtoo,and
haveat leasta roughsenseof why ‘we can't proveeverythingwe want to
prove’.

The aim of this article is to give students(sixth-formers/highschool
seniorsand juniors, or beginning undergraduates)a small senseof what
metamathematicsis—that is, how one might use mathematicsto study
mathematicsitself. School or college teacherscould base a classroom
exerciseon the lettergamesI shall describeandusethemasa springboard
for further exploration.Since I shall presupposeno knowledgeof formal
logic, the gamesare less an introduction to Gödel's theoremsthan an
introduction to an introduction to them. Nevertheless,they show, in an
accessible way, how metamathematics can be mathematically interesting.

2.   The vowel game (+2-variant)
The following one-player ‘game’ is played with the letters of the

Englishalphabet.At any stage,you canperformoneof the following three
actions:

(i) Action 1: immediatelybelow the last letter to be written down (if
any), write a vowel;

(ii) Action 2: immediatelybelow the last letter to be written down,
write any letter that is the doublesuccessorin thealphabetof any
previous letter;

(iii) Action 3: end the game.
(Thedoublesuccessorof is , that of is , etc.) A simpleexampleof a
game is:

a c b d

(Action 1)i
(Action 2)k

* The ContinuumHypothesiscanbe expressedby sayingthat the sizeof the real
numbersis the next size of infinity after the smallestinfinite size, that of the
natural numbers; its undecidability was proved by Gödel and Paul Cohen.
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(Action 2)m
End (Action 3)

Thelastletterof a game,if it hasone,is calledthatgame'sterminalletter; in
theexampleabove, is the terminalletter.A possibleterminal letter is the
terminal letter of a possiblegame.The questionis: what are the possible
terminal letters?  Think about it before reading on.

m

3.   Solution
The answerturns on a curious featureof the English alphabet.Let's

numberthe lettersin thealphabet,so that is 1, is 2, and is 26. The
trick is to notice that the vowels occupy odd-numbered positions:

a b … z

: 1 sta
: 5 the
: 9 thi
: 15 tho
: 21stu

Sinceadding2 to anoddnumberresultsin anoddnumber,andthenumber
of lettersin the English alphabet(26) is even,the set of possibleterminal
lettersis preciselythesetof lettersin odd-numberedpositions: , , , , , ,

, , , , , , .
a c e g i k

m o q s u w y
The descriptionof the gamewas somewhatvague,in that it did not

specifywhetherthe alphabet‘wraps around’, i.e. whetherfor the purposes
of thegamethesuccessorof is . As we cannow see,thatdoesn'tmatter:
the terminallettersare theodd-numberedonesin bothcases.Theansweris
equally unchangedif one takes to be a vowel, since occupiesan odd-
numbered position in the alphabet.*

z a

y y

4.   The vowel game (+3-variant)
Suppose Action 2 is emended as follows:
(ii) Action 2*: immediatelybelow the last letter to be written down,

write any letter that is the triple successorin the alphabetof any
previous letter.

What are the possible terminal letters in this variant of the game?
The answeris that all of them are, assumingthat the alphabetwraps

around.To seethis, noticethat startingfrom , onecanreachall the letters
whosepositionin thealphabetleavesremainder1 whendivided by 3 (1, 4,
7, etc.).Onceonehasreached , the 25 thletterof thealphabet(notice that

a

y

* Although in Englishthe letter is traditionally takento bea consonant,it canin
fact havea vocal value as well as a consonantalone,dependingon the word it
appearsin. For example, the value of in ‘why’ is vocal—the word is a
homophoneof ‘wi’ as in ‘wi-fi’—whereas its value in ‘yes’, ‘yak’ or ‘you’ is
consonantal.

y

y
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25 leavesremainder1 whendividedby 3), onethenreaches , since is 's
triple successor.Starting from , reachablefrom via , one
reachesall the letters whoseposition in the alphabetleavesremainder2
whendivided by 3 (2, 5, 8, etc.). From , which is the 26 th letter of the
alphabet(notice that 26 leavesremainder2 when divided by 3), one then
reaches , since is 's triple successor.Finally, starting from , one can
reachall the letterswhosepositionin thealphabetleavesremainder0 when
divided by 3 (3, 6, 9, etc.), in otherwordsall the multiplesof 3. Sinceany
numberleavesremainder0, 1 or 2 whendivided by 3, that coversall the
letters.This provesthat all the lettersof the alphabetare possibleterminal
letters of the +3-variant of the game.

b b y
b a d, g, … , y

z

c c z c

The +3-variant is mathematicallya little more interesting than the
original +2-version.It makesit clear that what underpinsthe solutions,as
manyreaderswill haverealised,is modulararithmetic.The lettersreachable
from in the original +2-versionof the gameare just the letters whose
positionsareof theform (mod26) for non-negative . Thefact that
all vowelsarein position (mod26) for some explainswhy all and
only letterswhosepositionsareequalto (mod26) areattainable.A
similar explanationcanbe given for the +3-variant:the numbersequalto

(mod 26) for non-negative are all the numbersfrom 0 to 25
inclusive, so that everything is reachablefrom (and a fortiori from a
vowel).

a
1 + 2N N
1 + 2N N

1 + 2N

1 + 3N N
a

5.   The consonant games
We turn now to the consonantgame,or better, games,as there are

infinitely many of them. In contrastto the vowel games,the aim of these
gamesis to reachall theconsonantssubjectto theconstraintthatno vowels
are reached. Different versions of this game arise from different
specificationsof the two actions,analogousto thoseof the vowel game.
Suppose is a setof consonantsand a non-negativeinteger.The -
consonant game is the following:*

S N (S, N)

(i) Action 1: immediatelybelow the last letter to be written down (if
any), write any element of ;S

(ii) Action 2: immediatelybelow the last letter to be written down,
write any letter that is the successorin the alphabetof any
previous letter;

N th

(iii) Action 3: end the game.
Terminallettersarethendefinedin thesameway asin thevowel game.The

-consonantgame,for specificvaluesof and , is saidto besoundif
its setof terminalletterscontainsno vowels,andunsoundif thissetcontains
(S, N) S N

* I usecapitallettersasvariablesor constantsfor numbers,andscriptcapitalletters
as variables or constants for sets. Letters are autonymously denoted by
themselves.As earlier, the successorof a letter is the letter that appears
placesafterit in the(cyclic) alphabet;e.g.the successorof is andthatof
is .

N th N
3rd a d z

c
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at least one vowel. It is said to be completeif its set of terminal letters
containsall the consonantsand incompleteif it omits at leastone.The idea
behind theselabels is that, in contrastto the vowel game, in consonant
gamesvowelsaredeemed‘bad’, so we don'twantany of themto endup as
terminalletters;andconsonantsaredeemed‘good’, so we wantasmanyof
them as possible to be terminal letters.

Let's illustrate the definition with someexamples.Start with a simple
classof games,in which (theemptyset),and is anynon-negative
integer.Sincein thesegameswe canneverperformeitherAction 1 or 2—
we cannevergetstarted—it'sclear that the setof terminallettersis empty.
Thus all the -consonant games are sound but incomplete.

S = ∅ N

(∅, N)
Next, considerthe class of gamesfor which . Since in these

gamesAction 2 boils downto ‘write downanyletterpreviouslywritten’, the
terminallettersof the -consonantgamearesimply theelementsof .
Theonly -gamethat is soundandcompleteis theonefor which is
equalto , where is thesetof consonantsin theEnglishlanguage.For if
omitsa consonant,thenthe -gameis incomplete;andif containsa
vowel, then the game is unsound.

N = 0

(S,  0) S
(S,  0) S

C C S
(S,  0) S

Turn finally to the case . When discussingthe vowel game,we
remarkedthat the vowels occupyodd-numberedpositionsin the alphabet,
andthatthealphabetconsistsof anevennumberof letters.The -game
is thereforeunsoundif containsany consonantwhose position in the
alphabetis odd; for exampleif is in , thenonecan reach by writing
down (Action 1) followed by (Action 2), which is a vowel. Conversely,
if containsno consonantwhosepositionin the alphabetis odd, thenit is
soundbut incomplete,sincethe set of terminal letters in that casecannot
containany of theodd-numberedconsonants,that is to say,noneof , , ,

, , , , . The underlying reason,once more, is that the +2-action
preserves parity and that the English alphabet has an even number of letters.

N = 2

(S,  2)
S

c S e
c e

S

c g k
m q s w y

A naturalquestionnow arises:for which and is the -game
both sound and complete?

S N (S, N)

6.   A little theorem
The answer is:

Theorem: The -gameis soundandcompleteif, andonly if,
(the set of consonants) and  is a multiple of 26.

(S, N) S = C
N

Thosewilling to takethis theoremon trust canskip to thenext section.
For the rest, we begin the proof with a lemma:
Lemma: Let integers and havegreatestcommondivisor . If is an
integer,theneveryequationin unknown of the form (mod
has a solution.

M N D A
X NX ≡ DA M)

Theproof of thelemmais easyenoughif we assumethefollowing fact:
if is thegreatestcommondivisor of and thenthereareintegers andD M N X
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suchthat . For, multiplying bothsidesof thelastequation
by , we seethat andhencethat (mod ,
i.e. solves (mod . The fact itself is a corollary of the
Euclidean algorithm for finding the greatest common divisor of two
integers;its proof may be found in any elementarytextbook on number
theory.

Y XM + YN = D
A AXM + AYN = AD AYN ≡ AD M)
AY NX ≡ DA M)

Turningto thetheorem,it's clearthattheset of terminallettersof the
-gameconsistsof all and those letters equal to (mod 26)

where is the position in the alphabetof someelementof and is any
non-negativeinteger. We split the argumentinto four cases.Since the

-game is equivalent to the -game, we need only
considervaluesof from 0 to 25 inclusive.Observealsothat if is empty
then is alsoempty,as previouslyargued.Thus if the -gameis to
standa chanceof being soundand complete, must containat leastone
letter, a fact we henceforth assume.

T
(S, N) S + NX

S S X

(S, N) (S, N + 26K)
N S

T (S, N)
S

(i) If then . So if the -gameis to be soundand
complete,  must be equal to , the set of consonants.

N = 0 T = S (S,  0)
S C

(ii) If is oddandnot divisible by 13, then is thesetof all lettersof
the alphabet,sincethe valuesof (mod 26) areall the integers
from 0 to 25 inclusive (apply the Lemmawith ,
and ). It follows thatif is oddandnot divisibleby 13 then
the -game is unsound.

N T
NX

N = N M = 26
D = 1 N
(S, N)

(iii) If is odd anddivisible by 13, then . If is equalto
thenit mustcontainthe letter andhenceits antipode (a letter's
antipodebeing13 placesafterandbeforeit in thecyclic alphabet),
so the game cannot be both sound and complete.

N N = 13 T C
b o

(iv) If is even and non-zero,then is not divisible by 13 but is
divisible by 2. By an applicationof the Lemma (with ,

and ), every equationin unknown of the form
(mod 26) hasa solution,where is an integer.And if

the -gameis to becompletethentheset of terminalletters
mustcontain . But if contains , which is the third letterof the
alphabet,then it must also contain all odd-numberedletters, by
whathasjust beenargued.Henceno suchgamecanbebothsound
and complete.

N N
N = N

M = 26 D = 2 X
NX ≡ 2A A

(S, N) T
c T c

That completesthe proof that the only soundand completegamesare the
onesfor which and is divisible by 26. In other words,theseare
thegamesin which onemay write downany consonantandany previously
written letter. Thesegamesare trivially soundandcomplete;andno other
games are sound and complete. 

S = C N

Our proof usedsomemodular arithmetic that may not be familiar to
somestudents;but suchstudentscanstill provethe theoremby efficiently
running through the 26 possible values of , for different .N S
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7.   Analogy
What do the vowel gameand the consonantgameshave to do with

metamathematics?We can draw a fairly exactmetamathematicalanalogy
between consonant games and mathematical systems.

We maythink of the lettersof thealphabetasmathematicalstatements,
e.g. statementsof arithmetic, or geometry,or combinatorics.Consonants
may be thoughtof as true statements,suchas , and vowels as
falsestatements,suchas .* Theconsonantsin , which onemay
write down at any point, are akin to axioms: true statementsone may
assumeat any point in the argument.Applying Action 1 is thus akin to
assumingan axiom—astatementone neednot arguefor but may simply
posit—in a mathematicalargument.Applying Action 2, in contrast,is akin
to applyinga rule of inference:it allows us to derivea newstatementfrom
previouslyderivedones.A terminalletter is akin to a theorem:a statement
proved using only axioms as a starting point via acceptablerules of
inference.An axiomsystemis soundjust whenits theoremsetconsistsonly
of true statements.This is akin to a soundconsonantgame,which ‘proves’
only consonants(true statements)and no vowels (false statements).An
axiom systemis completejust when its theoremsetconsistsof all the true
statements.This is akin to a completeconsonantgame,which ‘proves’ all
theconsonants(true statements).Whatwe would ideally like is a soundand
completeproof system,sincewe would like our proof systemto proveall
and only true statements.Finally, the mathematicsused in investigating
whether a particular consonantgame is sound or complete is modular
arithmetic.In our analogy,it playsthe role of the metamathematicsusedto
investigatethe propertiesof mathematicalproof systems,in particulartheir
soundness and completeness.

2 + 3 = 5
2 + 3 = 7 S

One of the most famousproof systemsis PeanoArithmetic. Named
after the Italian mathematicianGiuseppePeano,PeanoArithmetic is a
systemcontainingaxioms for intuitively true principles about arithmetic
(suchasthe principle of induction)and logical rulesof inferences(suchas
modusponens,i.e. from and‘if then ’ infer ‘ ’').† PeanoArithmetic
is a soundsystemin that its axioms are true statementsand its rules of
inferencepreservetruth, so its theoremset is a subsetof all true statements
onecanmakeaboutarithmeticin the languageof thesystem.The question
is: is PeanoArithmetic complete?That is to say,aswell asprovingonly true
statementsof arithmetic(becauseit is sound),doesPeanoArithmetic also

‘A’ A B B

* In the consonantgames,that is. In the vowel game, the analogy would be
reversed:the vowels would play the role of true statements.We focus on the
consonant games here.

† The name‘PeanoArithmetic’ is in fact a misnomer,due to BertrandRussell,
since Richard Dedekind first came up with theseaxioms, which Peanolater
investigated, with honest attribution to Dedekind. The usual English
pronunciationof ‘PeanoArithmetic’, beit thedisyllabic‘Pia-no’ or thetrisyllabic
‘Pi-a-no’ is unfaithful to the (trisyllabic) Italian pronunciation‘Pe-a-no’, with
‘Pe’ pronounced as in ‘pen’ and the stress falling on the middle syllable.
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proveall truestatements?This is thequestionGödelposedandansweredin
the negativein 1931.* As he showed,PeanoArithmetic is incomplete:it
expressessometruearithmeticalstatementswhich it itself cannotprove.The
truebutunprovablestatementsgeneratedby Gödel'smethodsarenow called
Gödelsentences.In fact, Gödel'sargumentsshowedthat suchstatements
arise for most reasonablemathematicalsystems,including any consistent
system that includes basic arithmetic and whose theorem set can be
effectively generated.

What Gödelshowed,then, is that actualmathematicalsystemstend to
bemorelike the -gamesfor indivisible by 26 thanthe -game:
theyaresoundbut incomplete.Our ‘impossibility’ theoremfor systemswith

(mod 26) or showedthat, if the systemis sound, it is
impossibleto reachall theconsonants.We thusprovedthat in suchsystems
there is no ‘proof’ of someconsonantor other. As we might now put it,
pursuingthemetamathematicalanalogy:our metalanguageproof (in normal
mathematics)showedthat there is no object-languageproof (in the game
language)of someconsonant.For the -game,in contrast,we havea
(metalanguage)proof that every consonant(truth) is reachable(provable),
i.e. that every consonant is a possible terminal letter.

(S, N) N (C,  0)

N ≠ 0 S ≠ C

(C,  0)

We summarisethe parallels between consonantgames and proof
systems in the following table:

Consonant Game Mathematical System
alphabet statements

consonants true statements
vowels false statements

terminal letters (elements of )T theorems
the set S axiom set

the -Action+N rule of inference
applying Action 1 assuming an axiom
applying Action 2 applying a rule of inference

modular arithmetic metamathematics
soundness (no vowels are reachable)soundness (no false statement is provable)
unsoundness (a vowel is reachable)unsoundness (a false statement is provable)

completeness (all consonants are reachable)completeness (all true statements are provable)
incompleteness (not all consonants are reachable)incompleteness (not all true statements are provable)

But beware:the parallel is not perfect. The argumentswe gave for the
incompletenessof thesound -gamesandunsoundnessof thecomplete

-games,for (mod 26) or , were basedon modular
arithmetic.Gödel'sgeniuslay in the fact that he usedarithmetic itself to
codea sentence which ‘says’ that itself is notprovablein thesystem.In
fact, Gödel's argumentalso used some facts about modular arithmetic,
includingtheChineseRemainderTheorem;but it alsocrucially usedthefact

(S, N)
(S, N) N ≠ 0 S ≠ C

G G

* Gödelhimself wasconcernedwith RussellandWhitehead'ssystemin Principia
Mathematica, but his argument generalises.
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thatonecanusenumbersto codestatementsof arithmeticor indeedof any
other part of mathematics.It is quite clear, in contrast, that modular
arithmetic is an entirely different theory from the consonantgame itself;
there is no obvious way in which we could use the consonantgame to
investigateitself. But althoughtheconsonantgamedoesnot hint at the idea
of self-referencecentral to Gödel'sargument,it doeshave a great many
other points of analogy, as just observed.

8.   Conclusion
The mathematicsusedto solvethe vowel gameis simple,andrequires

only an implicit understandingof modulararithmetic.Indeed,I wascareful
to explain it in a way thatdoesnot explicitly appealto modulararithmetic.
In the past, I have even usedthe vowel gameas an Oxford admissions
question(though that use hasnow beenforfeited). Solving the consonant
gamesrequires a little more, but still fairly elementary,knowledge of
modulararithmetic.Thesegamesare thereforeaccessible,mathematically
interesting,and a bona fide introduction to metamathematics.They are a
gentle introduction to the kind of thinking involved in metamathematics,
requiring no acquaintance with formal logic.
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