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1. Internal and external motivations for deviance 

 

The hardest test of deviant logic is mathematics, which constitutes by far the most sustained 

and successful deductive enterprise in human history. With only minor exceptions, 

mathematicians have freely relied on classical logic, including principles such as the law of 

excluded middle, A ¬A. They unquestioningly accept classical reasoning in proofs. When 

deviant logicians reject a classical principle, they face an obvious challenge: what does that 

mean for mathematics? Where does it leave theorems whose proofs rely on the principle? 

Absent a good response, the deviant logic has not earned the right to be taken seriously. 

 How the dialectic goes from there depends on what motivates the rejection of the 

classical principle. Some motivations are internal to mathematics. The standard example is the 

intuitionistic rejection of excluded middle, motivated by a constructivist conception of 

mathematics in general and infinity in particular. The rejection of classical mathematics is the 

point of intuitionism, not a grudgingly accepted incidental cost. Intuitionists willingly accepted 

the burden of building mathematics anew using only intuitionistically acceptable reasoning. The 

result may be no adequate substitute for classical mathematics, but that is a further issue. 

 A more recent example of logical deviance with a motivation at least partly internal to 

mathematics is paraconsistent logic. Dialetheists such as Graham Priest endorse an unrestricted 

comprehension principle for sets, including the inconsistent instance that generates Russell’s 

paradox, while revising the logic to avoid the total collapse classically implicit in the claim that 

the Russell set is self-membered if and only if it is not self-membered (Priest 1995: 123-94). 

Here the motivation is overtly to simplify and clarify the axioms of set theory: some rebuilding 

of mathematics is intended, not just accepted as a by-product. 

 Even in these internally motivated cases, the usual strategy is not usually to construct a 

new mathematics from scratch, with no eye to the old. Often, it is to make the new as close as 

possible to the old, while starting with the deviant logic and respecting the motivation for 

reform. It is a project of reconstruction, not pure construction ab initio. That is hardly surprising, 

given the multitudinous successful applications of classical mathematics throughout science. 
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 For other rejections of classical logic, the motivation is external to mathematics. Salient 

examples include various proposals motivated by phenomena of vagueness, such as sorites 

paradoxes. Typical cases involve non-mathematical words like ‘heap’, ‘bald’, ‘red’, and ‘rich’, 

which lack clear boundaries. On the assumption that the unclarity does not merely manifest our 

characteristic ignorance of the boundary’s location, vagueness is supposed to involve some sort 

of non-epistemic indeterminacy that undermines the bivalent dichotomy of truth and falsity. 

Supervaluationism offers at least a quasi-classical treatment of such indeterminacy (§5 briefly 

discusses its non-classical aspect). As for more obviously non-classical treatments of vagueness, 

there is no consensus as to which is most promising. Many reject excluded middle and 

postulate some form of many-valued logic, typically either the three-valued strong Kleene logic 

K3 or a continuum-valued fuzzy logic. Another alternative is to reject Cut, the structural rule 

that allows a series of short arguments to be chained together as in a sorites paradox, so that if 

C follows from B and B from A then C follows from A. In any case, such proposals are usually not 

intended to disrupt classical mathematics. Core mathematical vocabulary is assumed to be 

precise, and so not to generate sorites paradoxes and other phenomena of vagueness. Thus 

classically valid reasoning is still supposed to preserve truth within a purely mathematical 

language.   

 One might contest the assumption that vagueness does not infect mathematics. For 

instance, even the language of pure set theory has been thought to be vague as to exactly what 

counts as a ‘set’, so that Cantor’s continuum hypothesis comes out true on one legitimate 

sharpening but false on another (Feferman 2011). However, even if such vagueness is granted, 

it is usually assumed to be irrelevant for purposes of the ordinary working mathematician. 

Admittedly, some standard notation of ordinary working mathematics is vague by intention: for 

instance, x   y is read ‘x is approximately equal to y’, and x << y is read ‘x is much smaller than 

y’. However, for the sake of argument we may concede that in principle such uses of vague 

notation in mathematical proofs can always be eliminated in favour of something more precise. 

 A further motivation external to mathematics for rejecting classical logic comes from the 

Liar and other semantic paradoxes. Metalinguistic terms like ‘true’ and ‘false’ do not figure in 

the core language of mathematical theories. Consequently, those who take the semantic 

paradoxes to motivate a retreat from classical logic to K3 or some other non-classical logic 

usually assume that their logical reform leaves classical mathematics itself intact. 

 Yet another example of logical deviance motivated externally to mathematics is 

quantum logic, which rejects the classical distribution principle that A (B C) entails (A B)

(A C) because it supposedly fails in the quantum world. This too is usually assumed to do no 

damage to classical mathematics. 

 This chapter concerns the idea that, for all externally motivated logical deviance shows, 

classical logic is fine for mathematics. It has been voiced by various theorists. For example, 
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Hartry Field takes excluded middle to fail in the presence of semantic and sorites paradoxes, 

but suggests (Field 2008: 101):  

 

Presumably excluded middle holds throughout ordinary mathematics, and 

indeed whenever vagueness or indeterminacy is not at issue. 

 

Recently, Ole Thomassen Hjortland has articulated the idea in more detail (2017: 652-3): 

 

Mathematical proofs do contain an abundance of instances of classical 

principles: applications of classical reductio ad absurdum, conditional proof, 

disjunctive syllogism, the law of absorption, etc. The emphasis, however, should 

be on the fact that these are instances of classical principles. The mathematical 

proofs do not rely on any of these principles being unrestricted generalizations 

[…]. They do at most rely on the principles holding restrictedly for mathematical 

discourse, which does not entail that the principles of reasoning hold universally. 

Put differently, mathematical practice is consistent with these reasoning steps 

being instances of mathematical principles of reasoning, not generalizable to all 

other discourses. A fortiori, they may very well be principles of reasoning that 

are permissible for mathematics, but not for theorizing about truth. 

 

I will argue that such claims are much too optimistic about the prospects of isolating 

mathematics from logical deviance in non-mathematical discourse. They overlook the capacity 

of pure mathematics to be applied. 

 

 

2. The generality of mathematics 

  

The simplest way of applying pure mathematics is just by substituting what may loosely be 

called ‘empirical terms’ for the variables in its theorems, when the latter are universal 

generalizations. Of course, many actual applications to science involve something less direct 

and more elaborate than that, but if pure mathematics cannot be kept free of externally 

motivated logical deviance in the simplest applications, then the Field-Hjortland strategy is 

already in serious trouble. 

We can start with a rather extreme external motivation for logical deviance: ontological 

vagueness. Consider the idea that there are vague objects, such as mountains, whose identity is 

vague in ways that make them counterexamples to the law of excluded middle for identity: 

 

EMI   x  y  (x = y   x ≠ y) 



4 
 

 

A proponent of this view may hold that there is a mountain Everest and a mountain 

Chomolungma such that it is vague whether they are identical. The vagueness is not in the 

names but in the things named. Under the assignment of Everest and Chomolungma to the 

variables ‘x’ and ‘y’ respectively, the open formula x = y is neither true nor false. Given the 

many-valued semantics which this theorist adopts, the disjunction x = y   x ≠ y is 

correspondingly neither true nor false under this assignment, so the universal generalization 

EMI is not true. Of course, this is a deeply contentious view, and very far from my own. 

Nevertheless, such views have been defended by serious, technically competent philosophers 

of vagueness (Parsons 2000). 

 For present purposes, the point is that EMI is a sentence in the pure language of first-

order logic with identity, without non-logical predicates or individual constants. It therefore 

seems to belong to the core language of mathematics. Although Everest and Chomolungma are 

not mathematical objects, they are still in the range of the first-order quantifiers. Thus the 

logical deviance, although motivated externally, still infects mathematics. One cannot rely on 

excluded middle even for formulas in its core language. 

 For proponents of the isolationist strategy, the problem may seem to have an obvious 

solution. They can restrict their defence of classical logic to pure mathematics, where by 

definition the quantifiers are restricted to purely mathematical objects. In particular, the 

quantifiers in set theory as a branch of mathematics are restricted to pure sets, sets to which 

only sets bear the ancestral of the membership relation. A set is pure if and only if all its 

members are. Thus Everest, Chomolungma, their singletons, pair set, and so on, are excluded 

from the quantifiers of pure mathematics. On this reinterpretation, EMI is immune to the 

proposed counterexample. 

 But where does the proposed solution leave applied mathematics? At an elementary 

level, consider the statement that if there are exactly m apples and n oranges, and no apple is 

an orange, then there are exactly m + n apples and oranges. It quantifies over non-

mathematical objects, apples and oranges, and so falls outside pure mathematics, on the 

proposed restriction. It is not even clear how it might be derived from a theorem of pure 

mathematics, as just construed. Of course, Peano arithmetic itself quantifies only over natural 

numbers, but one might still expect pure mathematics as a whole to deliver the result that for 

any pluralities xx and yy, if there are exactly m xx and n yy, and none of the xx is one of the yy, 

then there are exactly m + n xx and yy. 

At a more sophisticated level, consider the application of group theory to the group of 

symmetries of a physical system. The symmetries are rotations, reflections, translations, or 

other mappings of the elements of the system onto each other. They are not purely 

mathematical objects. Thus group theory as a branch of pure mathematics on the proposed 

restriction does not deal with such symmetries. In some cases, the chief interest of a result in 
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pure mathematics derives from its applications: Arrow’s Theorem may be an example, with its 

application to voting rules. 

 At first sight, the problem of applied mathematics may in turn appear to have an easy 

solution. For it may be argued that any system of objects some of which are not purely 

mathematical is isomorphic to a system of purely mathematical objects. On this view, each set 

of non-sets is in a one-one correspondence with a set of pure sets, which induces a mapping of 

any properties, relations, or operations defined over the former to corresponding properties, 

relations, or operations defined over the latter.1 Thus one can prove a result in pure 

mathematics and then by isomorphism transfer it to impure applied mathematics.  

The isomorphism argument appeals to standard habits of mathematical thinking. 

However, they are invalidated by the very restriction of mathematics at issue. For starters, the 

claim ‘Every set of non-sets corresponds one-one with a set of pure sets’ falls outside pure 

mathematics on the proposed restriction, since it quantifies over objects that are not purely 

mathematical: sets of non-sets. It would have to be derived from some impure theory, which 

on the envisaged view is not entitled to rely on classical logic. Indeed, the alleged 

counterexample to EMI shows that the claim is quite dubious in this setting. For suppose that 

the set {Everest, Chomolungma} of non-sets corresponds one-one with a set X of pure sets. By 

hypothesis, pure set theory obeys classical logic, so either X has at most one member or X has 

at least two members. Therefore, since it corresponds one-one with X, either {Everest, 

Chomolungma} has at most one member, in which case Everest and Chomolungma are 

identical, or it has at least two members, in which case they are distinct. Thus the isomorphism 

argument conflicts with the assumption that excluded middle fails in the non-mathematical 

case. 

One moral of that argument is that if set theory is to provide a foundation for 

mathematics, it must be impure set theory, for example ZFCU, Zemelo-Fraenkel set thery with 

the axiom of choice and ur-elements (non-sets), rather than just ZFC. For a key feature of pure 

mathematics is that it can be applied outside itself, to natural and social science. Without 

impure sets, set theory fails to enable such applications. An account of isomorphisms between 

pure and impure sets is itself part of impure set theory, not of pure set theory.  

A similar moral goes for other putative foundations of mathematics: one condition of 

adequacy is that they enable pure mathematics to be applied outside itself. A topical case is 

homotopy type theory, the standard text on which advertises it as ‘univalent foundations of 

mathematics’ (Univalent Foundations Project 2013). Unfortunately, the text appears to miss 

this point, and presents homotopy type theory in a way which fails to enable applications 

outside itself. In effect, it presents homotopy type theory as failing to meet the condition of 

adequacy on foundations of mathematics.2 Whether this defect can somehow be repaired is an 

open question. 
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In any case, even if we do find a sense in which every set of non-sets corresponds one-

one with a set of pure sets, the strategy of transferring results about the latter to the former is 

undermined by the very hypothesis at issue, that classical logic holds when the quantifiers are 

restricted to purely mathematical objects but not when the restriction is lifted. For that 

hypothesis entails that what holds under the restriction is not structurally representative of 

what holds without the restriction. A parallel argument will apply to other putative 

foundational frameworks. Thus, given the hypothesis, the isomorphism strategy fails as a way 

of applying mathematics. 

For all that has just been argued, some classical principles may hold under the 

restriction to purely mathematical objects but not more generally. But the point is that once 

you treat that as a live option, you cannot freely apply standard pure mathematics to science. 

Instead, you must develop an alternative mathematics for applications, based on your 

preferred non-classical logic. That is the hard work which proponents of the isolationist strategy 

were hoping to avoid. 

Might the case of EMI be somehow misleading? After all, the hypothesis of ontologically 

vague identity is notoriously problematic. We may therefore consider a deviant logician who 

nevertheless accepts EMI. The next question is whether the standard, classical rule of universal 

instantiation can be applied to EMI. If so, we can derive an instance EMIi of EMI for any closed 

singular terms ‘a’ and ‘b’:  

 

EMIi  a = b   a ≠ b 

 

For instance, ‘a’ and ‘b’ may abbreviate ‘Everest’ and ‘Chomolungma’ respectively. But a non-

classical logician who regards vagueness as semantic rather than ontological may still reject 

EMIi, on the grounds that indeterminacy in how names refer can invalidate an instance of 

excluded middle. 

The envisaged theorist accepts EMI but rejects its instance EMIi, and so must also 

restrict the standard rule of universal instantiation. Of course, that is not unprecedented: it 

happens in free logic. A similar restriction might be adopted here: to derive EMIi from EMI, one 

needs the auxiliary premises  x x = a and  y y = b. The theorist rejects those premises, 

because ‘a’ and ‘b’ are (allegedly) indeterminate in reference. The trouble with this strategy is 

that in effect it treats semantic indeterminacy as reference failure: vague names become 

virtually unusable in science, because they fall outside the reach of universal generalizations, 

including mathematical theorems. That applies not just to radically vague names but even to 

slightly vague ones, since the slightest vagueness in ‘a’ suffices to make EMIi fail, for a suitable 

choice of ‘b’, on the envisaged view of vagueness. In practice, virtually any term for a physical 

quantity is at least slightly vague. 
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Such problems for universal instantiation arise even when the quantifiers are restricted 

to purely mathematical objects. For instance, in a suitable context, ‘a’ may abbreviate ‘the 

velocity of that cloud in kilometres per hour’, or ‘the current number of oxygen molecules in 

the Pacific ocean’, or ‘the largest small natural number’. One can talk vaguely about 

mathematical objects, just as one can about non-mathematical objects. On some precise, 

purely mathematical reading of ‘b’, it will then be vague whether a = b. Nor is this problem 

specific to the identity predicate. It arises for other mathematical predicates too. The same 

examples show that, on a non-classical semantic view of vagueness, it is problematic to reason 

from the classical principle TO that real or natural numbers are totally ordered in the standard 

way to a vague instance TOi: 

 

TO   x  y  (x ≤ y   y ≤ x) 

 

TOi  a ≤ b   b ≤ a 

 

To avoid such problems on the semantic view, the relevant restriction is not to quantify only 

over purely mathematical objects but rather to use only purely mathematical vocabulary. 

However, that restriction merely exacerbates the problem of applied mathematics. 

 Is the difficulty specific to vague singular terms? If so, it should be resolved by the 

Quinean move of eliminating singular terms in favour of predicates. But, on reflection, such a 

move turns out to make little difference. 

 If we are allowed to quantify into predicate position, we have the second-order version 

of the problem of universal instantiation. For instance, on its intended interpretation the 

second-order universal generalization EM2 is precise: 

 

EM2   X  x  (Xx   ¬Xx) 

 

Informally, EM2 says that for every way, everything either is or is not that way. On a suitably 

unrestricted understanding of the quantifiers, EM2 will be precise. Thus, if the problem for 

excluded middle is vagueness, then EM2 should hold. But if the second-order rule of universal 

instantiation is valid, then EM2 entails its instance EM2i: 

 

EM2i   x  (Fx   ¬Fx) 

 

But when the predicate F in EM2i is vague, those who take excluded middle to fail in case of 

vagueness will reject EM2i.3 A similar problem arises if some classical principle other than 

excluded middle is taken to fail in case of vagueness. If mathematical theorems are formulated 

as precise higher-order generalizations, and classical logic holds for precise languages but not 
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vague ones, then we cannot expect to instantiate those theorems with vague predicates, so 

their applications are blocked. 

 If one tries to approximate the generality of a second-order universal generalization 

(such as EM2) with that of the corresponding first-order schema, the problem is more 

immediate. On the envisaged view of vagueness, the unrestricted first-order schema is invalid, 

because instances such as EM2i fail when F is vague. 

 The point generalizes to other motivations for non-classical logic external to 

mathematics, such as the semantic paradoxes. For instance, EM2i is often alleged to fail when 

Fx abbreviates ‘x is true’, even though EM2 remains a classical theorem in the language of pure 

second-order mathematics. Similarly, for proponents of quantum logic, instances of the 

distributive law fail for predicates ascribing properties to a particle, even though the law itself 

may be formulated as a classical theorem in the language of pure second-order mathematics. In 

such cases, pure mathematics cannot be applied by means of second-order universal 

instantiation. 

 It will not do simply to claim that we can recover the instances of the second-order 

universal generalization when we need them in unproblematic cases. For Fx may be 

problematic, generating a paradox, for some values of ‘x’ and not for others, but to restrict 

second-order universal instantiation we must classify the general predicate F as problematic or 

unproblematic, since what gets substituted for the second-order predicate variable X is F, not 

the open formula Fx for some particular value of ‘x’. 

 Of course, in many circumstances (though not all) we can use first-order generalizations 

over sets instead of second-order generalizations into predicate position. Instead of 

instantiating the second-order predicate variable X with F, we then instantiate a first-order set 

variable with a set term such as ‘{x: Fx}’. For example, instead of EM2 and EM2i we have 

excluded middle for membership and its instances respectively: 

 

EMM   s  x  (xs   xs) 

 

EMMi   x  (x{x: Fx}   x{x: Fx}) 

 

But that is no help. For if there is such a set as {x: Fx}, then x{x: Fx} should reduce to Fx, and    

x{x: Fx} to ¬Fx, so EMMi should reduce to EM2i, which is just what the envisaged non-classical 

logician rejects, while accepting the first-order universal generalization EMM, since it is a 

classical theorem in the language of pure mathematics. On the other hand, if there is no such 

set as {x: Fx}, then EM2i should not yield EMMi anyway. Either way, the envisaged non-classical 

logician refuses to go from EMM to EMMi, and so faces the first-order version of the obstacle to 

applying pure mathematics, already discussed above. 
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3. Are there false classical theorems? 

 

For a deviant logician who rejects bivalence, a more modest claim is that, even if not every 

theorem of classical mathematics is true, none of them is false. Thus one will never go too badly 

wrong if one relies on classical mathematics. Some initial results point that way. For instance, if 

A is a theorem of classical logic, then no valuation in the Kleene weak or strong three-valued 

semantics makes A false.4 One might hope to extend that result to all theorems of classical 

mathematics. 

 However, the result depends on peculiarities of the Kleene semantics. It does not apply 

to all forms of many-valued semantics. For proponents of many-valued logic, a natural thought 

about perfect borderline cases for vague expressions and Liar cases is that we are facing an 

aporia because there is an underlying semantic equality between a paradox-inducing sentence 

A and its negation ¬A, so they should get the very same value (neutral). But, on the analogy 

between many-valued and two-valued semantics, it is natural to allow a biconditional ↔ that 

does for sentences what ‘=’ does for singular terms: a symbol for extensional identity. That is 

what ↔ does in two-valued semantics. Thus if the sentences B and C get the very same value, 

B ↔ C should be true. In particular, A ↔ ¬A should be true in case of aporia. Since the 

negation of a true sentence should be false, ¬(A ↔ ¬A) should be false. But ¬(A ↔ ¬A) is a 

theorem of classical logic; it is a two-valued tautology. In such ways, many forms of many-

valued semantics allow some classical theorems to be false.   

 In the three-valued semantic framework, the absence of a connective behaving as ↔ 

above looks like an expressive limitation of the Kleene approach. On the latter, one is forced 

instead to define A ↔ B as (A   B)   (¬A   ¬B), which is neutral rather than true when both 

A and B are neutral; it entails both A   ¬A and B   ¬B. This has major repercussions for the 

development of set theory on the Kleene approach. For instance, consider the axiom of 

extensionality: 

 

AE  s  t  (s = t ↔  x (xs ↔ xt)) 

 

Since s = s, from AE we can trivially obtain this from AE: 

 

  s  x  (xs ↔ xs) 

 

But on the Kleene definition of ↔, this entails EMI, excluded middle for membership. In a 

setting where excluded middle is not generally valid, that is a significant restriction: 

membership is never indefinite. Similarly, consider the existence of singletons: 
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ES   x  s  y (ys  ↔  x = y) 

 

On the Kleene definition of ↔, ES entails EMI, excluded middle for identity.5 In a setting where 

excluded middle is not generally valid, that too is a significant restriction: identity is never 

indefinite. To avoid such restrictions, many many-valued theorists will want a semantics on 

which B ↔ C is true when B and C get the same value.6 As noted above, they are then liable to 

falsify some theorems of classical logic and mathematics. 

 Proponents of such an approach might hope that classical theorems only get falsified 

when bivalence fails ‘badly’. But that is not in general so. For instance, on a standard fuzzy 

logical approach, the values are real numbers in the interval [0, 1], where 1 represents perfect 

truth and 0 perfect falsity. The connectives are typically given the continuum-valued 

Łukasiewicz semantics, on which B ↔ C gets value 1 whenever B and C get the same value. One 

might expect that if some atomic formulas are evaluated ‘almost classically’, all getting values 

very close to 1 or 0, then any classical theorem built up out of them will also be evaluated 

almost classically. But it is not so. Pick any positive real number δ, however small. Then on 

some valuation which assigns an atomic formula P a value within δ of a classical value, 0 or 1, 

some classical tautology built up only from P, ↔, and ¬ comes out perfectly false (the appendix 

gives details). On such an approach, the slightest degree of vagueness can falsify some classical 

theorems. 

 That is far from the only case where a non-classical approach falsifies some classical 

theorems. For example, in intuitionistic mathematics, the theory of choice sequences has 

theorems of the form ¬ x (Fx   ¬Fx) (Dummett 1977: 84; 2000: 61-2). In intuitionistic logic, 

although it is inconsistent to deny any specific instance of excluded middle, it is not always 

inconsistent to deny a universal generalization over infinitely many instances of excluded 

middle. 

  Although not all non-classical logics diverge so dramatically from classical logic, claims of 

approximately classical behaviour must be established, not assumed.  

 

 

4. The example of probability theory 

 

On the evidence so far, attempts to maintain classical logic within pure mathematics while 

rejecting it elsewhere create severe obstacles to the application of mathematics. We can test 

this conclusion against the case of probability theory, a branch of mathematics in which 

theorems are rigorously proved but applications supply much of the motivating force. 

 From a purely mathematical point of view, a probability space is any triple <Ω, F, P> 

where Ω is a nonempty set, F is a collection of subsets of Ω containing the empty set and closed 

under countable unions and complements in Ω (a σ-field), P is a function mapping each 
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member of F to a nonnegative real number, P(Ω) = 1, and P satisfies countable additivity: if X is 

the union of the pairwise disjoint members X0, X1, X2, … of F then P(X) is the sum of P(X0), P(X1), 

P(X2), … . Thus what it is to be a probability space is defined in purely mathematical terms; the 

conditions amount to the Kolmogorov axioms for probability and entail other standard features 

of probability. The restriction of P to a σ-field is to avoid technical problems which otherwise 

occur when Ω is infinite. Such a definition enables the theory of probability spaces to be a 

branch of pure mathematics.  

Informally, however, a more specific interpretation motivates the development. A 

standard textbook opens with this (Grimmett and Stirzaker 2001: 1): 

 

Definition. The set of all possible outcomes of an experiment is called the 

sample space and is denoted by Ω. 

 

Another textbook begins ‘Let us consider an experiment of which all possible results are 

included in a finite number of outcomes’ (Shiryaev 2016: 1). A third just speaks of ‘outcomes’ in 

inverted commas, without saying what they are outcomes of (Durrett 2010: 1). Although the 

informal idea of a possible outcome of an experiment plays no essential role in the proofs of 

theorems, it helps give point to the enterprise.7 

The informal understanding of probability spaces goes further (Grimmett and Stirzaker 

2001: 2): 

 

we think of events as subsets of the sample space Ω. Whenever A and B are 

events in which we are interested, then we can reasonably concern ourselves 

also with the events A B, A B, and Ac, representing ‘A or B’, ‘A and B’, and 

‘not A’ respectively. 

 

Of course, the standard definitions of the set-theoretic operations of union, intersection, and 

complementation already link them to the respective sentential connectives: A B is {x: xA or 

xB}, A B is {x: xA and xB}, and Ac is {x: xΩ but not xA}. More generally, when we 

apply the mathematical apparatus, we wish to assign probabilities to events in the informal 

sense, which we can specify by sentences such as ‘There was an explosion’. To do so, we must 

first interpret those sentences by mapping them to events in the technical sense, subsets of 

some suitable Ω, sets of possible outcomes of an experiment (often in a very broad sense).  

To be more explicit about the relation between sentences and events as subsets of Ω, 

let the sentence A be interpreted by the event [A]. We can also use standard symbols in place 

of the natural language connectives ‘or’, ‘and’, and ‘not’. Thus:  

 

[A B] = [A] [B] 
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[A B] = [A] [B]  

[¬A] = [A]c 

 

Consequently, in classical mathematics, [A ¬A] = [A] [A]c = Ω, so P([A ¬A]) = P(Ω) = 1 in any 

probability space. Thus, if classical logic is valid for pure mathematics, applying standard 

probability theory involves assigning probability 1 to the law of excluded middle, which 

opponents of the law will resist. A similar argument obviously goes for any other classical 

tautology in disjunction, conjunction, and negation, and for the distributivity principle that fails 

in ‘quantum logic’.  

Of course, we can conceive alternative rules for assigning events to formulas of the 

forms A B, A B, and ¬A. But they all amount to deviant interpretations of the connectives, 

and so merely change the subject. 

Thus if deviant logicians accept a classical tautology involving disjunction, conjunction, 

and negation within mathematics but not outside, it is quite unclear how they can apply the 

results of standard probability theory to natural science. 

 

  

5. Mathematical reasoning 

 

So far, applying pure mathematics has been treated simply as a process of instantiating its 

theorems. However, mathematics is used in science far more pervasively than that. For 

example, given a scientific law or hypothesis in the form of an equation, one uses ordinary 

mathematical reasoning to deduce its consequences, typically with statements of initial 

conditions or other auxiliary assumptions as extra premises. Rejections of classical logic often 

have the effect of calling such reasoning into question, even when motivated externally to 

mathematics. 

 To illustrate the variety of inference rules rejected by one non-classical logician or 

another, we need look no further than the problem of vagueness, which has been taken to 

motivate the rejection of almost any given rule: 

 Some fuzzy logicians define a valid argument as one such that on every interpretation 

on which every premise reaches a fixed threshold of degree of truth, say 0.9, so does the 

conclusion. By that standard, the rule of modus ponens comes out invalid: even if its premises 

are ‘true enough’, its conclusion may not be. For instance, in a sorites series for the vague 

predicate F, if Fa has degree of truth 0.91 while Fb has degree of truth only 0.89, then Fa → Fb 

has degree of truth 0.98 by one standard semantic rule (see the Appendix), so Fa and Fa → Fb 

reach the threshold of 0.9 while the conclusion Fb falls short.8 

By contrast, some paraconsistent accounts of vagueness invalidate the rule of 

disjunctive syllogism, on the grounds that it is not truth-preserving. For if borderline statements 
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are treated as truth-value gluts, both true and false, and A is borderline while B is plain false, 

then A B is true (because A is true), and ¬A is true (because A is also false), while the 

conclusion B is plain false. 

Supervaluationist approaches to vagueness typically validate all theorems of classical 

logic and all classical rules of inference (including modus ponens and disjunctive syllogism) from 

premises in the object-language to a conclusion in the object-language. However, one of the 

main supervaluationist approaches invalidates some classical meta-rules according to which the 

validity of one or more object-language arguments implies the validity of another object-

language argument. More specifically, it invalidates standard classical meta-rules which 

discharge premises, such as conditional proof (if B follows from Γ and A then A → B follows 

from Γ alone), reductio ad absurdum (if both B and ¬B follow from Γ and A then ¬A follows from 

Γ alone), and proof by cases (if C follows from Γ and A, and also from Δ and B, then C follows 

from Γ, Δ, and A B).9 

Others have rejected standard structural meta-rules, which are not specific to a 

particular connective, such as the Cut rule (if A follows from Γ, and B follows from Δ and A, then 

B follows from Γ and Δ), in order to block sorites paradoxes. For example, let S be the tolerance 

principle that the successor of any small natural number is small, where ‘small’ is vague; then 

even if our other rules tell us that ‘1 is small’ follows from ‘0 is small’ and S, and that ‘2 is small’ 

follows from ‘1 is small’ and S, we typically need Cut to conclude that ‘2 is small’ follows from ‘0 

is small’ and S.10 

The rejection of any of the rules just mentioned could also have been illustrated from 

non-classical treatments of the semantic paradoxes. 

 The difficulty of being classical inside mathematics but non-classical outside generalizes 

from theorems to rules and meta-rules. For suppose that a deviant logician accepts classical 

reasoning within mathematics but rejects a classical rule or meta-rule R as invalid outside, and 

so rejects some classically valid reasoning from premises Γ to a conclusion A because one of its 

steps applies R to a non-mathematical atomic expression E, such as a vague or semantic 

predicate. Now replace E by a new variable V of the same grammatical type throughout the 

reasoning. Unlike E, V lacks a distinctively non-mathematical meaning. Repeat the process until 

all the non-mathematical atomic expressions in the original reasoning have been replaced by 

distinct new variables. The result is some analogous reasoning from premises Γ* to a conclusion 

A*, which is still classically valid because it has the same relevant form as the original classically 

valid reasoning. Our deviant logician accepts the reasoning from Γ* to A* because it is classically 

valid and it contains no extra-mathematical elements. But we can recover the original 

reasoning from Γ to A simply by substituting E back for V, or interpreting V in terms of E, and 

likewise for any other substitutions made. 

The deviant logician will doubtless refuse to give up, and will instead reject the 

substitution of E for V as illicit. This rejection is either sensitive or insensitive to the details of 
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the reasoning from Γ* to A*. If it is insensitive, then it amounts to a blanket rejection of the 

application of all mathematics and logic to expressions such as E, which puts the latter beyond 

the reach of reason. But terms such as ‘heap’ and ‘small’, ‘true’ and ‘false’, are not beyond the 

reach of reason. On the other hand, if the rejection is sensitive to the details of the reasoning, 

then the deviant logician is in effect already engaged in the project of reconstructing 

mathematics to determine, for purposes of applying it, how much can survive the retreat to the 

deviant logic. 

Sometimes the variable V will be of a higher grammatical type, not usual in ordinary 

mathematical notation. The reasoning from Γ* to A* may then be more logical than 

mathematical in flavour. For present purposes, however, that is a superficial feature. For 

example, if ‘x is red’ in the reasoning from Γ to A became Rx, for a predicate variable R, in the 

reasoning from Γ* to A*, we could instead have used xr (with an eye to the set of all red 

things) or ‘r(x) = 1’ (with an eye to the characteristic function for ‘red’). That would have given 

the substitute argument a more characteristically mathematical flavour, while raising the same 

key issues. If there is no set of all red things, no characteristic function for ‘red’, and so on, then 

how can we apply standard set-theoretic or function-theoretic mathematical reasoning to the 

distinction between red and non-red at all?11 

 For mathematical reasoning, the conclusion is the same as for mathematical theorems: 

if classical logic fails outside pure mathematics, and pure mathematics is fit to be applied 

outside itself, then classical logic fails inside pure mathematics too.  

 

 

6. The closure role of logic 

 

Another way to think of the background role of logic and mathematics in natural and social 

science is as a closure operator. We want to test scientific hypotheses by their logico-

mathematical consequences, so a system of logico-mathematical reasoning should induce a 

mapping from each set of hypotheses Γ to its set of consequences Cn(Γ) according to that 

system, the closure of Γ under its consequence relation. For simplicity, we can treat the 

hypotheses and the consequences as sentences of the same language. Indeed, for many 

purposes we can identify the system of reasoning with this closure operation.  

 Closure operations have some standard structural features:12 

 

(i) If Γ   Δ then Cn(Γ)   Cn(Δ) 

(ii) Γ   Cn(Γ) 

(iii) Cn(Cn(Γ))   Cn(Γ) 
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Arguably, all three features are assumed in the ordinary testing of scientific theories. There is 

no limit to the length of permitted chains of reasoning, so consequences of consequences of Γ 

are consequences of Γ, as (iii) says. Even a zero-length chain of reasoning counts, so members 

of Γ are consequences of Γ, as (ii) says. Finally, if Γ   Δ, then we can trivially reason from Δ to 

each member of Γ; since we can reason from Γ to each member of Cn(Γ), Cn(Γ)   Cn(Δ), as (i) 

says.13 

 Together, (i)-(iii) imply all the standard structural rules for a consequence relation, 

including Cut, which in this notation says: if ACn(Γ) and BCn(Δ {A}) then BCn(Γ Δ).14 

This is a problem for those who reject Cut in an attempt to solve semantic paradoxes or the 

paradoxes of vagueness. For example, suppose that we start by accepting that the successor of 

any small natural number is small and that 0 is small. We then deduce that 1 is small, and 

accept that too. Since we now accept that the successor of any small natural number is small 

and that 1 is small, we deduce that 2 is small, and accept that too, even though it does not 

follow from our original two postulates in a logic where Cut fails. We continue indefinitely, at 

each stage accepting only consequences in the Cut-free system of what we already accept. 

Evidently, we have not escaped the sorites paradox. In response to such difficulties, David 

Ripley, a friend of logics where Cut fails, admits that they are ill-suited to playing the closure 

role; he has other purposes in mind for them.15 

 Another substructural strategy involves replacing sets of premises by multisets, in which 

the same sentence may occur many times. The idea is that using a premise many times may 

require many occurrences of that premise. This involves rejecting the rule of Contraction, on 

which one occurrence of a premise is as good as two. The paradoxes may then be blamed on 

illicit uses of Contraction. However, when we are investigating the consequences of a scientific 

hypothesis, ‘How many occurrences of the hypothesis are we assuming?’ is not a sensible 

question.16 

 In general, substructural logics are ill-suited to acting as background logics for science. 

 

 

 

7. Non-classical mathematics 

 

When non-classical logics are introduced to treat paradoxes of vagueness, semantic paradoxes, 

or the like, the aim is to provide a systematic framework for correct deductive reasoning with 

vague, semantic, or other vocabulary for which classical reasoning is supposed to break down. 

This should extend to a systematic framework for correct mathematical reasoning with the 

same vocabulary. As already argued, if the non-classical logic is needed at all, it is also needed 

for mathematical reasoning with those terms. If we could simply substitute them for variables 

in classical mathematical reasoning, there would have been no need for the non-classical logic 
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in the first place. The lazy strategy does not work: mathematics must be redeveloped from 

scratch within the non-classical framework. Although there may be pockets within mathematics 

where everything behaves classically, on the non-classical view they cannot include 

mathematics for general applications. 

 What will non-classical mathematics be like? Obviously, that depends on the non-

classical logic. As a case study, let us consider the prospects for the classical least number 

principle in a setting where excluded middle is supposed to fail for vague or semantic 

vocabulary. 

 A set-theoretic version of the least number principle says that every nonempty set of 

natural numbers has a least member. In practice, we often need to apply the principle to a 

complex predicate F, in the form: 

 

LNP   n Fn   →  n (Fn  &   k (k<n → ¬Fk)) 

 

To obtain LNP from the set-theoretic version, we need a set {n: Fn}, where k{n: Fn} is 

equivalent to Fk. For present purposes, we can ignore the set-theoretic digression, and focus 

directly on the predicate version. Classically, LNP can be simply proved from the principle of 

mathematical induction. One shows by induction on m that this holds for all natural numbers 

m:  

 

n (n<m & Fn) → n (Fn &  k (k<n → ¬Fk)) 

 

But if excluded middle fails in case of vagueness, LNP is implausible for many vague predicates 

F. For instance, if Fn is read as ‘n is large’, where ‘large’ is vague, LNP goes from the obvious 

premise that there is a large natural number to the highly problematic conclusion that there is a 

least large natural number—what is it? 

 In response to this problem, Hartry Field (2008: 100-1) proposes a watered-down 

version of LNP: 

 

GLNP   n (Fn &  k (k<n → (Fk ¬Fk))   implies  n (Fn  &   k (k<n → ¬Fk)) 

 

The point of the restriction in the premise is that Fn &  k (k<n → (Fk ¬Fk)) in Field’s 

framework implies that F behaves like a precise predicate from n down, and Fn implies that 

there is no need to look above n for the least satisfier of F. 

 The trouble with GLNP is that it is a one-off postulate in place of a mathematical result, 

proved from more basic principles. Consider any other theorem-schema of classical 

mathematics, formulated with predicate variables like F. Does the non-classical logician simply 

look at it, and make an educated guess at the minimal mutilation of it to escape 
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counterexamples with vague or semantic predicates in place of the variables? Such an 

unsystematic, conjectural approach would fall far short of the standards of contemporary 

mathematics, which provides an enormous accumulating body of theorems ultimately derived 

from a very small group of first principles, such as the axioms of ZFCU. If mathematics were 

done in such an ad hoc spirit, one should have much less confidence in its results. 

 Alternatively, the non-classical logician might try to derive, within the favoured non-

classical logic, some watering-down of all classical mathematics from a small group of first 

principles, presumably similar to those of classical mathematics but rendered invulnerable to 

counterexamples with vague or semantic predicates. That looks like an enormous undertaking, 

if done properly.  

 One tiny step would be to derive GLNP from a suitable version of mathematical 

induction. In the setting of strong Kleene logic, it is best formulated as an inference rule 

(Halbach and Horsten 2006: 692), where t can be any term for a natural number: 

 

MI If from given side premises Г (in which the variable ‘n’ does not occur free) one 

can prove both F0 and, also given Fn, Fn+1, then from Г one can prove Ft. 

 

One can then universally generalize the conclusion over all natural numbers. With an 

appropriate background logic, one should then be able to derive GLNP from MI.  

The point of requiring a proof of Fn+1 from the additional premise Fn, rather than 

simply a proof of Fn → Fn+1, is that the logic affords modus ponens but not the deduction 

theorem, so the former requirement is weaker, making MI more general. For instance, if an 

inductive definition reduces Fn+1 to Fn, but does not exclude the case when both take the 

intermediate value, one may be able to prove Fn+1 from Fn without being able to prove 

Fn → Fn+1, which itself takes the intermediate value in that case. In strong Kleene logic, the 

standard axiom schema for mathematical induction is unsatisfactory for the opposite sort of 

reason: 

 

MIAx  (F0    n (Fn → Fn+1)) →  n Fn 

 

MIAx is too strong in this setting, since not all its instances are true. To take an extreme case, if 

Fn takes the intermediate value whatever natural number is assigned to the variable ‘n’, then 

so does the corresponding instance of MIAx. The inferential forms of mathematical induction 

avoid that problem.17 

Some non-classical logicians may even reject MI, because they reject its instance when 

Fn is read as ‘n is small’; they interpret the derivation of Fn+1 from Fn as a sort of tolerance 

principle for ‘small’. They may accept a watering-down of MI with the extra premise  n (Fn   

¬Fn), but if excluded middle fails for vague predicates, the question is whether any watering-
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down of mathematical induction is applicable to vague predicates of natural numbers. If not, 

we are drastically limited in our mathematical reasoning with such predicates. 

Those who endorse strong Kleene logic may accept MI. But then they will reject the 

classical derivation of LNP from MI, for on their view LNP fails when Fn is read as ‘n is small’. 

Treatments of the semantic paradoxes typically accept mathematical induction in the 

form of the rule MI, even for semantic predicates F (Halbach and Horsten 2006). However, 

standard mathematical principles of transfinite induction can be unavailable in non-classical 

settings. For instance, induction is provable in full generality only up to the ordinal ωω in the 

partial Kripke-Feferman system PKF, a formal theory of truth based on strong Kleene logic, 

motivated by the semantic paradoxes, although it can be proved in PKF up to ε0 for formulas 

without the truth predicate (Halbach 2015, corollary 16.7). 

The underivability of LNP from the rule MI also demonstrates that the common practice 

of measuring the mathematical strength of theories of arithmetic by which instances of 

mathematical induction they prove is inadequate when the background logic is non-classical. 

For a theory may do very well by that standard, yet lack many classically trivial consequences of 

those instances, and so be near-useless for applications. In the non-classical setting, we must 

check that standard results over a much wider range are derivable before we can start to 

regard the theory as seriously applicable.  

 These difficulties with induction and the least number principle are just a foretaste of 

the challenges for the reconstruction of mathematics within a non-classical logic. One can 

expect the non-classical logician to respond wherever possible with local ‘recovery’ results to 

the effect that classical logic can be recovered for a specified class of formulas on condition that 

their constituents are ‘well-behaved’, for example by obeying excluded middle. For this strategy 

to be cogent, at least the initial recovery results must themselves be proved within the 

corresponding non-classical metalogic. For metalogic is itself a branch of mathematics; to use a 

classical metalogic at this stage would be to assume something of the very kind that was to be 

proved. That applies to the whole meta-logical background, including the numerical coding of 

formulas. Jack Woods has raised serious doubts as to whether the required non-classical proofs 

of recovery results will be available to non-classical logicians. More specifically, even if there is a 

classical proof that there is a proof in the relevant non-classical system of φ, that classical meta-

theorem does not entitle non-classical logicians by their lights to rely on φ in their own 

inquiries, as opposed to using it ad hominem against their classical opponent. They need to 

display the non-classical proof itself, or at least to display a proof in their non-classical meta-

logic that there is such a ground-level non-classical proof. That may be humanly impossible, for 

instance if the length of the corresponding non-classical proof grows exponentially with the 

length of the classical growth (Woods 2017).   

 Suppose, however, that a recovery result can somehow be non-circularly obtained, and 

we use it to justify relying on classical mathematical reasoning in a given scientific explanation. 
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This will involve adding an auxiliary premise to the explanation, to ensure that the relevant 

terms are well-behaved, for instance by obeying excluded middle. That might be assumed 

directly, just by listing the relevant instances of excluded middle on a case-by-case basis. 

However, the more extra premises one adds, the more the explanatory cost, just as avoiding 

reliance on a premise adds explanatory value, by making the explanation more elegant and 

economical. Alternatively, one might add both an extra major premise, to the effect that 

excluded middle holds for all precise, non-semantic terms, and an extra minor premise, to the 

effect that the terms at issue are precise and non-semantic. But such metalinguistic premises 

seem even more out of place in an ordinary natural scientific explanation of a non-linguistic 

state of affairs. They are not even partly why the state of affairs obtains. Thus the recovery 

strategy has a tendency to degrade ordinary explanations in natural science. 

 

 

8. The easy-going attitude 

 

One sometimes encounters the easy-going attitude that classical logic is a good enough 

approximation for some purposes and not for others, just as physicists who accept Einsteinian 

special relativity theory may still treat Newtonian mechanics as sometimes but not always a 

good enough approximation. An advantage of this attitude is that it enables one to use classical 

logic when one judges it to be good enough, with no great pressure to specify the precise 

conditions under which it is good enough. One simply judges it to be good enough in ordinary 

mathematical contexts, but not good enough in the presence of paradoxes of vagueness or 

semantic paradoxes. That is compatible with several contrasting attitudes to the non-classical 

logic. Some may regard it as, unlike classical logic, correct without exceptions. Others may 

regard it as a better approximation than classical logic, but still only an approximation to 

genuine logical consequence. Still others may be undecided between those two attitudes. 

 The easy-going attitude is often used as an excuse for not developing an alternative 

mathematics on the basis of the preferred non-classical logic. But the excuse presupposes that 

the contexts in which one needs mathematics are disjoint from the contexts in which one needs 

non-classical logic. That presupposition is hard to motivate. Suppose, for example, that one 

takes the semantic paradoxes to require a non-classical logic. Versions of those paradoxes arise 

when one adds a truth predicate to Peano arithmetic, by the standard devices of Gödel 

numbering and diagonalization. Thus, in order to give a rigorous theory of truth in mathematics 

as a whole, the theorist’s commitments require a development of mathematics on the basis of 

the preferred non-classical logic. Again, since quantum mechanics applies mathematics 

ubiquitously, those who propose non-distributive quantum logic as a serious alternative to 

classical logic are not excused from the need to reconstruct mathematics on the basis of their 

quantum logic. 
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  Theorists who motivate a non-classical logic by appeal to paradoxes of vagueness may 

take themselves to escape the requirement, on the grounds that when applying mathematics in 

science one can pretend that the relevant non-mathematical terms are precise, because the gap 

between this pretence and reality is irrelevant for scientific purposes. But that argument is 

simplistic. Here are some reasons why: 

 (I): Physics and other natural sciences are often in the business of making accurate 

quantitative predictions, sometimes with an expected error much less than one in a thousand. 

Vast sums of money may be spent on the basis of those predictions, as when a probe is sent to 

another planet. Theories are also tested by such predictions, as with a particle accelerator: then 

accuracy is needed for the value the quantity would take if the theory were true. Such 

predictions rest on complex mathematical reasoning and calculations, using standard classical 

mathematics. If there is vagueness in the relevant terms, and the true mathematics for vague 

terms is non-classical (because the correct logic for them is), then one would expect ‘vagueness 

errors’ in the predictions. Moreover, it would not be reasonable to expect the vagueness errors 

to take the form of random noise, normally distributed about the true value. Since the true 

non-classical mathematics will differ structurally from standard classical mathematics, the 

difference might easily result in errors of a more systematic kind, with some sort of structural 

bias. When scientists spend so much effort in meticulously controlling for other sources of 

error, should they not also make some attempt to control for vagueness errors? That would 

require a careful study of the nature of the divergences between classical mathematics and the 

true non-classical mathematics, which would in turn require the latter to have been developed. 

Here the easy-going attitude is not good enough. 

 (II): Consider the application of probability theory (§4) to the beliefs and reasoning of 

uncertain agents who specify the relevant events in vague terms, as real agents do. Such 

vagueness is highly relevant to doxastic and evidential probability, because borderline cases 

result in characteristic uncertainty effects. If the true logic and mathematics of vagueness is 

non-classical, then any psychologically realistic account must take that into account. 

Probabilities are being assigned to ‘vague events’. For reasons already explained, in such a 

setting non-classical theorists cannot simply help themselves to standard classical mathematics 

in the background. From their perspective, they must carefully justify any distinctive use of 

classical mathematics, on pain of distorting the very phenomena they are trying to understand. 

Here too the easy-going attitude is out of place.  

 (III): consider the use of mathematics in legal cases, for instance to analyse statistical 

evidence, as with DNA testing. In legal reasoning, such mathematical considerations interact 

with the imprecise terms in which the law is often cast and evidence is often given. If the true 

mathematics for such legal discourse is non-classical, that needs to be taken into account. 

When a verdict of innocence or guilt is at stake, the easy-going attitude is hardly appropriate. 
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 Of course, in practice we seem to get by well enough in (I)-(III) without taking into 

account the possibility of vagueness errors in classical mathematics. But friends of a non-

classical logic of vagueness should take no comfort from that fact, since it is some evidence that 

the logic of vagueness is classical after all (Williamson 1994). It does not support the easy-going 

attitude. 

 Friends of non-classical logic sometimes assume that classical logic is simply refuted by 

paradoxes of one sort or another, and is no longer even a candidate for non-approximate 

correctness. But such crude falsificationism is methodologically naïve. Classical treatments are 

available for all the paradoxes used to motivate non-classical logics. Although some people find 

those treatments implausible, the issues are too subtle, abstract, and theoretical to be settled 

either way by such pre-theoretical judgments. Rather, in the long run they will be decided by an 

abductive comparison of the rival accounts (Williamson 2013: 423-9; 2017). Since the accounts 

differ in their component logics, a major aspect of the comparison will naturally be the 

serviceability of those logics for mathematics and its applications in science, which is just where 

the easy-going attitude undermines non-classical logics. Since it invokes them only when the 

need is supposed to be most urgent, in the immediate presence of paradoxes, they lack the 

massive abductive support that accrues to classical logic in the vast range of non-paradoxical 

cases where explanations rely on standard classical mathematics. The effect of the easy-going 

attitude is to concede the abductive comparison to classical logic. 

 

 

9. Conclusion 

 

Pure mathematics is applicable to the world outside pure mathematics. As a result, in a non-

classical world, pure mathematics is no safe haven for classical logic. Advocates of non-classical 

logic motivated by non-mathematical considerations have often grossly underestimated the 

challenge of reproducing the success of classical mathematics within their framework.18  
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Appendix 

 

On the standard continuum-valued Łukasiewicz semantics for fuzzy logic, a valuation v maps 

each formula A to a real number v(A) in the interval [0, 1] (see Priest 2008: 224-231 for an 

introduction). Informally, 1 is understood as perfect truth and 0 as perfect falsity. For the usual 

connectives, the compositional evaluation rules are these: 

 v(¬A) = 1 – v(A) 

 v(A B) = minimum{v(A), v(B)} 

 v(A B) = maximum{v(A), v(B)} 

 v(A → B) = minimum{1, 1 – (v(A) – v(B))} 

For the biconditional, A ↔ B is taken to abbreviate (A → B)   (B → A), which induces this 

evaluation rule: 

 v(A ↔ B) = 1 − |v(A) – v(B)| 

Here |v(A) – v(B)| is the positive difference between v(A) and v(B); thus the more A and B differ 

in value from each other, the more the value of A ↔ B falls short of perfect truth. 

 For any formula A, the formula ¬(A ↔ ¬A) is a classical tautology. A quick calculation 

shows that on the continuum-valued semantics, v(¬(A ↔ ¬A)) = |2v(A) – 1|. Take any real 

number δ > 0. For some large enough natural number k ≥ 1, 2−k < δ. Let P be an atomic formula. 

Inductively define: 

 #0(P) = P 

 #n+1(P) = ¬(#n(P) ↔ ¬#n(P)) 

Consider a valuation v such that v(P) = 1 − 2−k. We show by induction that for n ≤ k, v(#n(P)) = 

1 – 2n−k. The basis (n = 0) is trivial. For the induction step, suppose that v(#n(P)) = 1 – 2n−k and 

n+1 ≤ k, so 1 – 2n−k ≥ ½. Then: 

v(#n+1(P)) = v(¬(#n(P) ↔ ¬#n(P))) = |2v(#n(P)) – 1| = |2(1 − 2n−k) – 1| = 1 − 2n+1−k 

This completes the induction. Hence, putting n = k, v(#k(P)) = 1 – 2k−k = 0. Since k ≥ 1 by 

hypothesis, #k(P) is a classical tautology, and it is built up by logical connectives out of the 

formula P whose value under v differs by less than δ from the ‘classical’ value 1, but v assigns 

#k(P) the lowest value, 0. 
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Notes 

 

1 See Uzquiano 2015: 15 for a case (which he does not quite endorse) that the non-

sets can be mapped 1-1 into the ordinals, which are purely mathematical objects 

(such a mapping implies a choice principle for non-sets). The mapping would then 

induce a 1-1 mapping from sets of non-sets to sets of ordinals, which are also purely 

mathematical objects, and so on for all impure sets. He also provides a useful 

account of relations between various choice and maximality principles for proper 

classes in the setting of impure set theory (op. cit.: 17-19).  

 

2 Three examples, which do not detract from the intrinsic mathematical interest of 

homotopy type theory, only from its capacity to enable applications: (a) The 

univalence axiom is informally paraphrased as saying ‘that isomorphic things can be 

identified’ in the strong sense that ‘every property or construction involving one also 

applies to the other’ (Univalent Foundations Program 2013: 5); but if the parts of 

two snowflakes constitute isomorphic physical systems with respect to given spatial 

relations, that does not make those physical systems have the same properties; for 

example, they differ in spatial location. (b) Homotopy type theory is supposed to 

subsume set theory because ‘we can define a class of types which behave like sets’ 

(ibid.: 6), but such structural analogies are no substitute for impure sets as a bridge 

between pure mathematics and its applications. (c) Homotopy type theory has a 

constructivist aspect: ‘we can regard a term a : A as both an element of the type A 

(or in homotopy type theory, a point of the space A), and at the same time, a proof 

of the proposition A’ (ibid.: 8). A particle may be in some sense an element of a type 

or a point of an abstract space, but it is not itself a mathematical proof (though 

propositions about it have various entailments). 

 

3 If we analyse the vague name ‘a’ by the vague definite description ‘the F’, treated 

Russell’s way, the assumption  x a = x becomes equivalent to  x  y (Fy  ↔  y = x), 

given which the definiteness of F, EM2i, should follow from the definiteness of 

identity, EMI. Thus if one wants the definiteness of identity but not of F, one must 

give up the assumption  x a = x, and so cannot expect to substitute the name in 

universal generalizations. 

 

4 Proof: Let the three values be T (true), N (neutral), and F (false). Define a partial 

order ≤ on {T, N, F} thus: X ≤ Y iff either X = N or X = Y. A valuation V refines a 

valuation U iff for every atomic formula P, U(P) ≤ V(P); V is bivalent iff for every 
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atomic formula P, V(P) {T, F}. One easily shows by induction on the complexity of 

the formula A that, for both the weak and strong Kleene semantics, if V refines U 

then U(A) ≤ V(A) and if V is bivalent then V(A) is the same as the value of A on a 

classical valuation coinciding with V on atomic formulas. But every valuation U is 

refined by some bivalent valuation V; thus U(A) ≤ V(A), so if U(A) = F then V(A) = F 

and A is not classically valid. The induction step works for the usual quantifiers as 

well as the usual sentential connectives. 

 

5 One can also use ES to obtain the definiteness of identity, EMI, from the definiteness 

of membership, on any reasonable account of ↔. 

 

6 For a many-valued treatment of the semantic paradoxes, one drawback of such a 

deviation from the Kleene approach is that it can generate revenge paradoxes. This 

applies to both one-way and two-way conditionals, which are naturally 

interdefinable in the presence of conjunction: A → B as A ↔ (A B) and A ↔ B as 

(A → B) (B → A). Hartry Field has struggled with the challenge of introducing a 

good conditional into such a treatment of the paradoxes; for a recent version see 

Field 2016. 

 

7 For the modal aspect of a probability space of possible outcomes see Williamson 

2016. 

 

8 For details of various ways of rejecting modus ponens in many-valued logic see 

Williamson 1994: 103-24. 

 

9 Γ and Δ are sets of premises. For details on the failures of the meta-rules under 

supervaluationism see Williamson 1994: 151-2. See also Williamson 2018 for further 

extensions of these results, including to a standard elimination rule for the 

existential quantifier and to vague mathematical notation (the cases of ≈ and << 

mentioned in §1). Not all theorists count such meta-rules as part of ‘classical logic’, 

but standard mathematical reasoning relies on them. 

 

10 See Ripley 2013. He does not count the structural meta-rules as part of ‘classical 

logic’, but standard mathematical reasoning relies on them. 

 

11 For purposes of applications, the sets and functions at issue can typically be 

restricted to a set-sized domain of discourse, and so are not ‘too large to exist’. 
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12 Tarski’s five axioms for such a closure operation Cn imply (i)-(iii) (Tarski 1983: 31). 

They also have other implications of less interest here. His axiom 1 says that the set 

of sentences of the language is at most countably infinite. Axiom 4 postulates 

compactness: a sentence follows from a set if and only if it follows from a finite 

subset of that set; this fails for second-order logic under its standard semantics. 

Axiom 5 says that there is a sentence from which every sentence follows; this fails 

for some versions of relevance logic. The axioms for a closure operator in Ripley 

2015 are equivalent to (i)-(iii). 

 

13 Of course, the monotonicity principle (i) fails for defeasible reasoning, but that is not 

at issue here.  

 

14 Proof: If ACn(Γ) then ACn(Γ Δ) by (i); but ΔCn(Γ Δ) by (i) and (ii), so Δ {A}

Cn(Γ Δ), so by (i) Cn(Δ {A})Cn(Cn(Γ Δ)); hence Cn(Δ {A})Cn(Γ Δ) by 

(iii); thus if BCn(Δ {A}) then BCn(Γ Δ). 

 

15 See Ripley 2013: 9. He considers, but does not pursue, an alternative strategy which 

treats the problem as based on an illicit application of Cut in the metalanguage. 

However, if the metalinguistic argument is mathematical, this strategy is not 

available to those who endorse classical reasoning (including Cut) within 

mathematics.  

 

16 See Ripley 2015 for a discussion, from a starting-point more sympathetic to the use 

of multisets, of difficulties in playing a closure role for logics without Contraction. 

 

17 An advantage of formulating mathematical induction axiomatically is that in the 

setting of second-order logic with the standard semantics one gains the full intended 

content of mathematical induction by prefixing MIAx with the second-order 

quantifier  F, which is needed for the categoricity of arithmetic (Shapiro 1991). By 

contrast, the theory of arithmetic obtained with the inferential versions of 

mathematical induction such as MI do not attain such generality. Of course, one may 

announce one’s intention to accept all instances of MI in extensions of the language, 

but that does not amount to expressing the generality in the theory itself. 

 

18 Many of the ideas in this chapter were presented at conferences on Metaphysics 

and Semantics at Yale University and on the Normativity of Logic at the University of 

Bergen, the 2016 Logic Colloquium at the University of Leeds, the 11th Panhellenic 

Logic Symposium at Delphi, and classes and colloquia at Brown University, the 
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